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Sensitivity Analysis of Genetic Algorithms for 
Optimization of Operating Conditions for Protein 

Production Plants

Abstract: This work introduces genetic algorithms, which will be investigated and used to perform sensitivity analysis. Genetic 
algorithms are part of a collection of stochastic optimization algorithms based on the concepts of biological evolutionary theory. This 
research deals with the problem of the search for optimal investment cost of multiproduct batch chemical plants found in a chemical 
engineering process with uncertain demand. The aim of this work is to minimize the investment cost and find out the number and size 
of parallel equipment units in each stage. For this purpose, it is proposed to solve the problem by using Genetics Algorithms (GAs). 
This GAs consider an effective mixed continuous discrete coding method with a four point crossover operator, which take into account, 
the uncertainty on the demand using Gaussian process modeling. Experiments indicated that relatively good results could be obtained 
using 4-point crossover with an applied rate of 0.7 and mutation rate ranged between 0.01 and 0.09 promised to give best performance. 
The results (number and size of equipment, investment cost, production time (Hi), CPU time and Idle times in plant) obtained by GAs 
are much more rapidly than mixed integer linear programming. This methodology can help the decision makers and constitutes a very 
promising framework for finding a set of “good solutions”. 
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Introduction
In chemical engineering, there has been an increased interest in the 
development of systematic method for the design of batch process in 
specialty chemicals, food products, and pharmaceutical industries [1]. 
Most processes in the modern biotechnology industry correspond to 
batch plants and with the rapid development of new products (i.e., 
both therapeutic and non-therapeutic proteins) [2].

The main host for recombinant proteins for many years has been 
Escherichia Coli. However, the developments with yeast cells have 
grown at a very rapid pace, which has resulted in several important 
commercial products such as insulin, Hepatitis B vaccine, and also 
more recently, chymosin and protease. The fact that many recombinant 
proteins made in yeast can be made to be secreted out of the cell and 
that yeast allows for at least partial glycosylation is an added bonus 
for this host [3], therefore, in the optimal design of a multiproduct 
batch chemical process, the production requirement of each product 
and the total production time available for all products are specified. 

The number and size of parallel equipment units in each stage as well 
as the location and size of intermediate storage are to be determined in 
order to minimize the investment cost.

The common approach used by previous research in solving the 
design problem of batch plant has been to formulate it as a Mixed 
Integer Nonlinear Programming (MINLP) problem and then employ 
optimization techniques to solve it. Robinson, et al. [4] studied the 
problem of designing multiproduct plants operating in single product 
campaign mode and with a single unit in each processing stage and 
they extended the nonlinear programming model to include both the 
design of discrete equipment size and the selection of the parallel units 
number, by solving it through the use of heuristics and branch and 
bound [4]. The same problem was further formulated by Grossmann, 
et al. [5] as a MINLP model. Knopf, et al. & Yeh, et al. [6,7] accounted 
for the presence of semicontinuous units. Voudouris, et al. [8] 
proposed reformulations of the previous design models where discrete 
size are explicitly accounted for.
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Many works in the literature on batch process design are based on 
expressions that relate the batch sizes linearly with the equipment sizes. 
Also, the processing times are usually expressed as nonlinear functions 
of the batch size. Given certain restrictions on these mathematical 
expressions, the models can be referred to as posynomials, which 
possess a unique optimum [5]. Salomone [9] proposed posynomial 
models in which the constants are obtained as a result of the 
optimization of the process decision variables with simplified models. 
Salomone, et al. [10] generalized the approach by allowing the 
process parameters to be generated from either experimental data 
and/or dynamic simulation. Because of the NP-hard nature of the 
design problem of batch plant, unbearable long computational time 
will be induced by the use of Mathematical Programming (MP) 
when the design problem is somewhat complicated. Severe initial 
values for the optimization variables are also necessary. Moreover, 
with the increasing size of the design problem, MP will be futile. 
Heuristics needs less computational time, and severe initial values for 
optimization variables are not necessary, but it may end up with a local 
optimum due to its greedy nature. Also, it is not a general method 
with respect to the fact that special heuristic rules will be needed for a 
special problem [10].

In economics, demand is the desire to own something and the ability 
to pay for it [11]. The term demand is also defined elsewhere as a 
measure of preferences that is weighted by income, but the market 
demand for such products is usually changeable, and at the stage 
of design of a batch plant, it is almost impossible to get the precise 
information on the future product demand over the lifetime of the 
plant. However, decisions must be made about the plant capacity. This 
capacity should be able to balance the product demand satisfaction. 
In the conventional optimal design of a multiproduct batch chemical 
plant [12], a designer specifies the production requirements for each 
product and total production time for all products [13]. The number 
required of volume and size of parallel equipment units in each stage is 
to be determined in order to minimize the investment cost.

Basically, batch plants are composed of items operating in a 
discontinuous way. Each batch then visits a fixed number of equipment 
items, as required by a given synthesis sequence (so-called production 
recipe) [14].

For instance, the design of a multiproduct batch chemical plant is 
not only to minimize the investment cost, but also to minimize: the 
operation cost, total production time, and to maximize: the revenue, 
flexibility index, simultaneously [15].

On the other hand, the key point in the Design of Multiproduct Batch 
Plants (DMBP) under uncertain demand. The market demand for 
products resulting from the batch industry is usually changeable, 
and at the stage of conceptual design of a batch plant, it is almost 
impossible to obtain the precise information on the future product 
demand over the plant lifetime. Nevertheless, decisions must be made 
about the plant capacity. This capacity should be able to balance the 
product demand satisfaction and extra-capacity in order to reduce the 
loss on the excessive investment cost or than on market share due to 
the varying product demands [16].

The most recent common approaches treated in the dedicated 
literature represent the demand uncertainty using fuzzy concepts 
with trapezoidal fuzzy number which can be represented by a 
membership function [17]. Yet, this assumption does not seem to 
be always a reliable representation of reality, because in practice we 
can’t get whole linguistics parameters about the uncertainty demand, 
such as perceptions, seasons and offers. For this reason an alternative 
treatment of the imprecision is constituted by using Gaussian Process 
Modeling that represents the “more or less possible values”. In this 
work, we will only consider multiproduct batch plants, which means 
that all the products follow the same operating steps [18], the structure 

of the variables are the equipment sizes and number of each unit 
operation that generally take discrete values.

The aim of this work is to solve the DMBP under uncertain demand 
using (GAs) with an effective mixed continuous discrete coding 
method with a four-point crossover operator. The model presented is 
general, it takes into account all the available options to increase the 
efficiency of the batch plant design: unit duplication in-phase and out-
phase and intermediate storage tanks. 

We proposed to apply GAs, an intelligent problem-solving method 
that has demonstrated its effectiveness in solving combinatorial 
optimization problem. Some modifications to traditional GAs, mainly 
an effective mixed continues discrete coding method with a four-point 
crossover operator is developed, and satisfactory results are obtained.

The paper is organized as follows, section 2 is devoted to the 
methodology. In section 3 we formulate the problem formulation, 
including process description. Then in section 4 we report results and 
discussion with comparative results. Finally the conclusions on this 
work are drawn. 

Materials and Methods
In the 1960s and 1970s witnessed a tremendous development in the 
size and complexity of industrial organizations. The administrative 
decision-making has become very complex and involves large 
numbers of workers, materials and equipment. A decision is a 
recommendation for the best design or operation in a given system 
or process engineering, so as to minimize the costs or maximize the 
gains [19]. Using the term “best” implies that there is a choice or set 
of alternative strategies of action to make decisions. The term optimal 
is usually used to denote the maximum or minimum of the objective 
function, and the overall process of maximizing or minimizing 
is called optimization. The optimization problems are not only in 
the design of industrial systems and services, but also apply in the 
manufacturing and operation of these systems once they are designed. 
Including various methods of optimization, we can mention: MINLP, 
Monte Carlo Method and Genetics Algorithms.

Genetics algorithms 

The term genetics algorithms, almost universally abbreviated now a 
days to GAs, was first used by John Holland and his colleagues [20]. 
A genetics algorithms is a search technique used in computing to find 
exact or approximate solutions to optimization and search problems, 
however the canonical steps of the GAs can be described as follows:

i. The problem to be addressed is defined and captured in an 
objective function that indicated the fitness of any potential 
solution.

ii. A population of candidate solutions is initialized subject to 
certain constraints. Typically, each trial solution is coded as a 
vector X, termed a chromosome, with elements being described 
as solutions represented by binary strings. The desired degree 
of precision would indicate the appropriate length of the binary 
coding.

iii. Each chromosome, Xi, i = 1, ..., P, in the population is decoded 
into a form appropriate for evaluation and is then assigned a 
fitness score, μ(Xi) according to the objective [21].

iv. Selection in genetics algorithms is often accomplished via 
differential reproduction according to fitness. In a typical 
approach, each chromosome is assigned a probability of 
reproduction, Pi , i = 1, ..., P, so that its likelihood of being selected 
is proportional to its fitness relative to the other chromosomes 
in the population. If the fitness of each chromosome is a strictly 
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positive number to be maximized, this is often accomplished 
using roulette wheel selection. Successive trials are conducted in 
which a chromosome is selected, until all available positions are 
filled. Those chromosomes with above-average fitness will tend to 
generate more copies than those with below-average fitness.

According to the assigned probabilities of reproduction, Pi , i = 1, ..., 
P, a new population of chromosomes is generated by probabilistically 
selecting strings from the current population. The selected 
chromosomes generate “offspring” via the use of specific genetic 
operators, such as crossover and bit mutation. Crossover is applied 
to two chromosomes (parents) and creates two new chromosomes 
(offspring) by selecting a random position along the coding and 
splicing the section that appears before the selected position in the 
first string with the section that appears after the selected position in 
the second string and vice versa (Figure 1). Bit mutation simply offers 
the chance to flip each bit in the coding of a new solution.

Figure 1: Four-points crossover operators.

The process is halted if a suitable solution has been found or if the 
available computing time has expired, otherwise, the process proceeds 
to step 3 where the new chromosomes are scored, and the cycle is 
repeated.

Implementation and empirical tuning methods

Mapping objective functions to fitness form: In many problems, the 
objective is more naturally stated as the minimization of some cost 
function g(x) rather than the maximization of some utility or profit 
function u(x). Even if the problem is naturally stated in maximization 
form, this alone does not guarantee that the utility function will be 
non-negative for all (x) as we require in fitness function (a fitness 
function must be a non-negative figure of merit. The duality of cost 
minimization and profit maximization is well known. In normal 
operations research work, to transform a minimization problem to 
a maximization problem we simply multiply the cost function by a 
minus one.

In genetic algorithm work, this operation alone is insufficient because 
the measure thus obtained is not guaranteed to be non negative in all 
instances. With GAs, the following cost-to-fitness transformation is 
commonly used [22]:

otherwise
CxgwhenxgCxf

0
)()()( maxmax

=
<−=

maxC may be taken as the largest g value observed thus far. For the 
problem of DMBP in this paper, we take this transformation form.

Fitness scaling: In order to achieve the best results of GAs, it is 
necessary to regulate the level of competition among members of 
the population. This is precisely what we do when we perform fitness 
scaling. Regulation of the number of copies is especially important 
in small population genetics algorithms. At the start of GAs runs, it 
is common to have a few extraordinary individuals in a population 
of mediocre colleagues. If left to the normal selection rule (pselecti, 
= ∑ f

f i ), the extraordinary individuals would take over a significant 
proportion of the finite population in a single generation, and this 
is undesirable, a leading cause of premature convergence. Later on 
during a run, we have a very different problem. Late in a run, there 
may still be significant diversity within the population; however, the 
population average fitness may be close to the population best fitness. 
If this situation is left alone, average members and best members 
get nearly the same number of copies in future generations, and the 
survival of the fittest necessary for improvement becomes a random 

walk among the mediocre. In both cases, at the beginning of the run 
and as the run matures, fitness scaling can help.

Constraints: We deal with the dimension constraints by coding 
equations and deal with time constraints this way: a genetics 
algorithm generates a sequence of parameters to be tested using the 
system model, objective function, and the constraints. We simply run 
the model, evaluate the objective function, and check to see if any 
constraints are violated. If not, the parameter set is assigned the fitness 
value corresponding to the objective function evaluation. If constraints 
are violated, the solution is infeasible and thus has no fitness.

Codings: When GAs manage a practical problem, the parameters of 
the problem are always coded into bit strings. In fact, coding designs 
for a special problem is the key to using GAs effectively. There are two 
basic principles for designing a GAs coding: (1) The user should select a 
coding so that short, low order schemata are relevant to the underlying 
problem and relatively unrelated to schemata over other fixed positions. 
(2) The user should select the smallest alphabet that permits a natural 
expression of the problem. Based on the characteristic and structure 
of DMBP, instead of choosing the concatenated, multiparamerted, 
mapped, fixed-point coding. A mixed continues discrete coding 
method with a four- point crossover operator is designed according to 
the two principles above. The coding method of a DMBP is as follows: 
Following the order-the numbers of out-of-phase groups in each batch 
stages, in-phase parallel units in each of the groups, semicontinuous 
parallel units in each semicontinuous stages, the size of batch stages, 
semicontinuous stages, each parameter of the item size variables is 
encoded independently in usual binary codings (local strings), as it 
simplifie the genetic operations, crossover and mutation. Then we 
place the highest bit of reach local string at the site from 1st to nth 
in DMBP chromosome and place the second highest bit of each local 
string at the site from (n+1)th to 2nd, and so on. Then we can obtain a 
DMBP chromosome. (see Figure 2).

Figure 2: Illustration of the encoding method for a small size example.

The reason for using crossed coding, because this codification is 
suitable for the item size variables, and can be analyzed in theory as 
follows:

•	 Because of the strong relationship among the parameters, the 
highest bit in each local string in binary codings determines the 
basic structure among every parameter, and the second highest 
bit in each local string determines finer structure among every 
parameter, and so on for the third, the fourth, etc.

•	 The schema defining length under crossed coding (n) is shorter 
than the length under concatenated, mapped, fixed-point coding 
(nK-K+1).

According to the schema theorem: short schemata cannot be disturbed 
with high frequency, the schema under crossed coding has a greater 
chance to be reproduced in the next generation. Due to its combining 
the characteristics of function optimization with schema theorem and 
successful binary alphabet table, crossed coding demonstrates greater 
effectiveness than the ordinary coding method in our implementation.

Local string formation is achieved this way: for a parameter 
[ ]maxmin , xxx∈ that needs to be coded, transform it to a binary coding 
[ ]Κ∈Χ 2,0 first (appropriate length K is determined by the desired degree 
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of precision) and then map it to the specified interval [ ]maxmin , xx . In 
this way, the precision of this mapped coding may be calculated as 








−
−= Κ 12

minmax xxδ . In fact, this means that the interval from minx  to maxx  
is divided into 12 −Κ  parts, because the biggest binary string that has 
a length of K equals the decimal number 1210 2...222 −++++ K . Then, we 
can obtain Xxx δ+= min , and a local string for parameter x with a 
length of K is obtained.

To illustrate the coding scheme to the size variables more clearly, we 
also want to give a simple example. For the minimization problem: 

),(min yxfz = in which [ ]700,300∈x  and [ ]1200,700∈y , if we adopt 
a string length of 5 for each local string and 10110:X , 01101:Y  is an 
initial solution, we will get the chromosome 1001110001 (Figure 2) 
and obtain:
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Although the item number per stage are copied just as they are worth 
in the chromosome (for instance, if nj=2, the corresponding locus will 
contain information “2”). The resulting configuration of a chromosome 
is shown in Figure 2. The final encoding procedure is adapted to the 
double nature of the variables: since continuous and integer variables 
have to coexist in the same chromosome, this latter is partitioned into 
two zones. As shown in Figure 2, the first zone encodes the continuous 
variables, i.e. the item sizes of each processing stage, as reduced 
variables, using crossed binary codings as explicated above. On the 
other hand, the integer variables, representing the item number for 
each stage, are copied directly in the chromosome without any change: 
for instance, the plant illustrated in Figure 2, has 2 items for stage 1, 1 
item for stage 2, and 5 items for stage 3: This corresponds to the integer 
numbers encoded at the end of the chromosome: 2, 1, 5.

Reproduction: The reproduction operator may be implemented 
in algorithmic form in a number of ways. In this paper, we take the 
easiest methods Roulette wheel [23].

Crossover: Crossover operator can take various forms, i.e., one-
point crossover, multi-point crossover [24]. It is commonly believed 
that multi-point crossover has better performance. The number of 
crossover points in a multi-points crossover operator is determined 
by the string structure. In this paper, a four-points crossover operator 
is adopted. The crossover rate plays a key role in GAs implementation. 
Different values for crossover rate ranging from 0.4 to1.0 were tried, 
and the results demonstrate that the values ranging from 0.6 to 0.95. 
In this paper, we take 0.6 as a crossover rate. 

Mutation operation: After selection and crossover, mutation is then 
applied on the resulting population, with a fixed mutation rate. The 
number of individuals on which the mutation procedure is carried out 
is equal to the integer part of the value of the population size multiplied 
by the mutation rate. These individuals are chosen randomly among 
the population and then the procedure is applied. The mutation rate 
using in this paper is 0.40.

Elitism: The elitism consists in keeping the best individual from the 
current population to the next one. In this paper, we take 1 as elitism 
value.

Population-related factors
Population size: The GAs performance is influenced heavily by 
population size. Various values ranging from 20 to 200 population size 

were tested. Small populations run the risk of seriously under covering 
the solution space, a small population size causes the GAs to quickly 
converge on a local minimum, because it insufficiently samples the 
parameter space, while large populations incur severe computational 
penalties. According to our experience, a population size range from 
50 to 200 is enough our problem. In this paper and according to our 
experience, we take 200 as a population size.

Initial population: It is demonstrated that a high-quality initial 
value obtained from another heuristic technique can help GAs find 
better solutions rather more quickly than it can from a random start. 
However, there is possible disadvantage in that the chance of premature 
convergence may be increased. In this paper, the initial population is 
simply chosen by random.

Termination criteria. It should be pointed out that there are no 
general termination criteria for GAs. Several heuristic criteria are 
employed in GAs, i.e., computing time (number of generations), no 
improvement for search process, or comparing the fitness of the best-
so-far solution with average fitness of all the solutions. All types of 
termination criteria above were tried; the criteria of computing time 
is proven to be simple and efficient in our problem. In our experience, 
200-1000 generations simulation is enough for a complicated problem 
as our problem (DMBP). The best results were obtained when the 
number of generations were taken as 1000 for our problem.

Problem formulation
Assumptions

The model formulation for DMBP’s problem approach adopted in this 
section is based on (Karimi, 1989). It considers not only treatment in 
batch stages, which usually appears in all types of formulation, but also 
represents semi-continuous units that are part of the whole process 
(pumps, heat exchangers, others).

A semi-continuous unit is defined as a continuous unit alternating 
idle times and normal activity periods. Besides, this formulation takes 
into account mid-term intermediate storage tanks, the obligatory mass 
balance at the intermediate storage stage, which is one of the most 
efficient strategies to decouple bottlenecks in batch plant design. They 
are just used to divide the whole process into sub-processes in order to 
store an amount of materials corresponding to the difference of each 
sub-process productivity.

This representation mode confers on the plant better flexibility for 
numerical resolution: It prevents the whole production process from 
being paralyzed by one limiting stage. So, a batch plant is finally 
represented as a series of batch stages (B), Semi-continuous stages 
(SC) and Storage Tanks (T).

The model is based on the following assumptions:

a. The processes operate in the way of overlay.

b. Production is achieved through a series of single product 
campaigns.

c. Units of the same batch or semi-continuous stage have the same 
type and size.

d. The devices in the same production line cannot be reused by the 
same product.

e. The long campaign and the single product campaign are 
considered.

f. The type and size of parallel items in-or out-of-phase are the same 
in one batch stage.

g. All intermediate tanks are finite.

h. The operation between stages can be of zero wait or no intermediate 
tank when there is no storage.

https://doi.org/10.51626/ijps.2021.01.00002
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i. There is no limitation for utility.

j. The cleaning time of the batch item can be neglected or included 
in processing time.

k. The size of the devices can change continuously in its own range.

Model 

The model considers the synthesis of (I) products treated in (J) batch 
stages and (K) semi-continuous stages. Each batch stage consists of 
(mj) out-of-phase parallel items of the same size (Vj). Each semi-
continuous stage consists of (nk) out-of-phase parallel items with 
the same processing rate (Rk) (i.e., treatment capacity, measured in 
volume unit per time unit). The item sizes (continuous variables) and 
equipment numbers per stage (discrete variables) are bounded. The 
(S-1) storage tanks, with size (Vs

*), divide the whole process into (S) 
sub-processes.

Following the above mentioned notation, DMBP’s problem can be 
formulated to minimize the investment cost for all items:

The investment cost (Cost) is written as an exponential function of the 
unit size, is formulated in terms of the optimization variables, which 
represent the plant configuration:

      (1)∑∑∑
===

++=
S
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s
ss
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kkk
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j
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jjj VcRbnVamCostMin

111
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Where aj and αj, bk and βk, Cs and γs are classical cost coefficients. 
Equation -1 shows that there is no fixed cost coefficient for any item. 
This may be unrealistic and will not tend towards minimization of the 
equipment number per stage. Nevertheless, this information was kept 
unchanged in order to compare our results with those found in the 
literature [25].

The constraints of the problem

a. Variable bounding:

{ } maxmin,..,1 VVVjj j ≤≤∈∀  (2)

{ } maxmin,..,1 RRRkk k ≤≤∈∀  (3)

Volume jV  of the items of each batch stage j and treatment capacity 
kR  of each semi-continuous stage k. However, these variables are 

not continuous anymore and were discretized with an interval of 50 
units between two possible values. This working mode was adopted 
in a view of realism. Indeed, since equipment manufacturers propose 
the items following defined size ranges, the design of operation unit 
equipment does not require a level of accuracy such as real number. 
Note, however, that the initial bounds on these size variables were kept 
unchanged, being for batch and semi-continuous, respectively: minV  
and maxV , and minR  and maxR .

Item number jm  in batch stage j and item number kn  in semi-
continuous stage k. These variables cannot exceed 3 items per stage (

3,1 ≤≥ kj nm ).

b. Time constraint: the total production time for all products must 
be lower than

a given time horizon H  :
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Where iQ  is the demand for product i.

c. Constraint on productivities: the global productivity for product i 
(of the whole process) is equal to the lowest local productivity (of each 
sub-process).
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These local productivities are calculated from the following equations:

Local productivities for product i  in sub-process s:

{ } { } L
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ii. Limiting cycle time for product i  in sub-process s:
{ } { } [ ]itij

L
is TMaxTSsIi Θ=∈∀∈∀ ,,..1,,..1  (7)

where Js and Ks are, respectively, the sets of batch and semi-continuous 
stages in

sub-process s.

Cycle time for product I  in batch stage j:
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Where k and k+1 represent the semi-continuous stages before and 
after batch stage j.

Processing time of product i in batch stage j:

{ } { } { } dij
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Operating time for product i  in semi-continuous stage k :
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Batch size of product i  in sub-process s :
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Finally, the size of intermediate storage tanks is estimated as the 
greatest size difference between the batches treated in two successive 
sub-processes:

{ } [ ])1()1((*Pr1,..,1 ++ Θ−Θ−+=−∈∀ ti
L
si

L
isisis TTSodMaxVSs  (12)

Process description 
The case study is a multiproduct batch plant for the production of 
proteins taken from the literature [3]. This example is used as a test 
bench since short-cut models describing the unit operations involved 
in the process. The batch plant involves eight stages for producing 
four recombinant proteins, on one hand, two therapeutic proteins, 
human insulin (A) and vaccine for hepatitis (B) and, on the other 
hand, a food grade protein, chymosin (C), and a detergent enzyme, 
cryophilic protease (D) [26]. As illustrate in Figure 3 the flowsheet of 
the multiproduct batch plant considered in this study. All the proteins 
are produced as cells grow in the fermenter.

Vaccines and protease are considered to be intracellular: the first 
microfilter 1 is used to concentrate the cell suspension, which is then 
sent to the homogenizer for microfilter 2 is used to remove the cell 
debris from the solution proteins.

The ultrafiltration 1 step is designed to concentrate the solution in 
order to minimize the extractor volume. In the liquid–liquid extractor, 
salt concentration (NaCl) is used solution in order to minimize the 
extractor volume. In the liquid–liquid extractor, salt concentration 
(NaCl) is used to first drive the product to a poly-ethylene-glycol 
(PEG) phase and again into an aqueous saline solution in the back 
extraction. Ultrafiltration 2 is used again to concentrate the solution. 
The last stage is finally chromatography, during which selective 
binding is used to better separate the product of interest from the 
other proteins. Insulin and chymosin are extracellular products. 
Proteins are separated from the cells in the first microfilter 1, where 
cells and some of the supernatant liquid stay behind. To reduce the 
amount of valuable products lost in the retentate, extra water is 
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added to the cell suspension. The homogenizer and microfilter 2 for 
cell debris removal are not used when the product is extracellular. 
Nevertheless, the ultrafilter 1 is necessary to concentrate the dilute 

solution prior to extraction. The final step of extraction, ultrafiltration 
2 and chromatography are common to both the extracellular and 
intracellular products [27].

Figure 3: Multiproduct batch plant for protein production.

On the other hand, the Figure 1 shows the allocation of intermediate 
storage tanks. Three tanks have been selected: the first after the 
fermenter, the second after the first ultrafilter, and the third after the 
second ultrafilter.

Results and Discussion
The typical results obtained by GAs were run 30 times starting 
from random initial population guarantees the stochastic nature 
of the algorithms with demand modeled by Gaussian probability 
distribution, minimizing the cost plant. The results are developed 

as shown in the following Table 1: Plant Cost, Hi and CPU time. 
Neverthless, the structure of equipment was illustrated in Table 2 [28].
Table 1: Results obtained by GAs.

Min (Cost plant) 833.647[$]

% Std. Dev 0.50%

Hi 5,491.123159(h)

CPU time <1(s)*

*CPU time was calculated to this method on Microsoft Windows XP 
Professional Intel(R)D CPU 2.80Ghz, 2.99GB of RAM.

Table 2: Equipment structure according to Table 1.

Stage 1 2 3 4 5 6 7 8

Vj 22.6085 6.7988 1.0794 1.6191 9.0651 0.8151 0.5497 0.0754

Rk 14.8047 1.0040 7.9194 99.888 16.2750

Vs 27.1410 2.0241 0.3467

mj 1 1 1 1 1 1 1 1

nk 1 1 1 1 1 1 1 1

The total production time computed by GAs is 5,491.12h to fulfill the 
eventual increase of future demand caused by market fluctuations. 
The table showed also a very small Std. Dev (error). In addition, GAs 
results in a faster convergence (less than one second). On the other 
hand, the GAs allow the reduction of the idle time to the stage. Table 3 
shows the idle times obtained by GAs.
Table 3: Idle times in plant with parallel units and intermediate storage tanks 
by GAs.

Unit
Product 1 2 3 4 5 6 7 8
Insulin 0 0 0 0.01 0 0
Vaccine 0 1.93 0.04 0 2.91 0 0.17 0

Chymosin 0 0.01 0 0 0.31 0.17
Protease 0 2.09 0 0 3.07 0 0.5 0

From these results, we can see that the results obtained by GAs are 
power.

However, since the case study has been taken from Montagna, et al. [3], 
they solved the problem using rigorous mathematical programming 
(MINLP) which is solved to global optimality (minimize the capital 
cost $829,500) with implementation of the outer approximation/
equality relaxation/augmented penalty method. However in previous 
work [3], they didn’t mentioned anything about CPU time, also in 
their model, they didn’t take into account operation costs. Nonetheless, 
their model needed a long computational time and require severe 
initial values to the optimization variables. Montagna, et al. [3], also 
showed in their paper that the behavior of the demand was completely 
deterministic. However, this assumption does not seem to be always a 

reliable representation of the reality, since in practice the demand of 
pharmaceutical products resulting from the batch industry is usually 
changeable.
Table 4: Simulation results of multiproduct batch plant problem after 1000 
generations.

Crossover 
type

Average of the Runs2 Geometric Mean of the Runs3

Pc = 
0.6

Pc = 
0.8

Pc = 
1.0 Pc = 0.6 Pc = 0.8 Pc = 1.0

1-Point 0.515 0.583 0.379 0.401 6.81E-2 2.33E-02

2-Point 0.216 0.753 0.474 1.28E-2 5.02E-3 3.13E-3

Uniform 0.113 0.183 0.203 9.52E-2 6.14E-3 3.17E-2

NN-2-
point 0.553 0.277 0.927 3.35E-2 0.79E-3 7.01E-4

NN-
uniform 0.376 0.305 0.229 3.47E-4 8.50E-5 9.12E-6

GAs performed effectively and gave a solution within 0.5% of the 
global optimal 833,647.5[$], GAs provided also interesting solutions, 
in terms of quality as well as of computational time.

Furthermore, GAs results in a faster convergence. However, GAs is 
designed to deal with problems of a more complicated as our problem, 
DMBP, successfully and the computing time(<1s) is more less than 
MINLP.

These results are important, because they demonstrate the effectiveness 
of GAs in solving the complicated design problem of DMBP, which is 
due to GAs searching from population (not a single point), and its 
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parallel computing nature and can be applied to deal with uncertain 
demand.

Now, some observation about some important aspects in our 
implication of GAs and some problems in practice: The most 
important of all is the method of coding, because the codification is a 
very important issue when a genetic algorithm is designed to deal with 
the combinatorial problem, as well as also the characteristics and inner 
structure of the DMBP. 

The commonly adopter concatenated, multiparameter, mapped, fixed 
point coding are not effective in searching to the global optimum 
[29]. According to the inner structure of the design problem of 
multiproduct batch that gives us some clues for designing the above 

mixed continuous discrete coding method with a four-point crossover 
operator. As it is evident to the results of application, this coding 
method is well fitted to the proposed problem.

Another aspect that affects the effectiveness of our Genetic Algorithms 
procedure considerably is a crossover. 
2The arithmetic mean is calculated as 
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Table 5: Resulting sensitivity error for each mutation rate.

Mutation Rate

Gen 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1000 0.281 0.087 0.065 0.069 0.127 0.073 0.043 0.039 0.167

2500 E-2 E-5 E-6 E-7 E-5 E-7 2.00E-07 8.50E-06 3.00E-02

Corresponding to the proposed coding method, we adopted a four-
point crossover. It is commonly believed that multipoint crossover is 
more effective than the traditional one point crossover method. 

It is also important to note that the selection of crossover points as well 
as the way to carry out the crossover should take into account the bit 
string structure, as it is the case in our codification.

A problem in practice is the premature loss of diversity in the 
population, which results in premature convergence. Because 
premature convergence is so often the case in the implementation of 
GAs according to our calculation experience. Our experience makes 
it clear that the Elitism parameter can solve the premature problem 
effectively and conveniently.

Conclusion
We applied Genetic Algorithms with an effective mixed continues 
discrete coding method with a four crossover point to solve the 
problem of DMBP. GAs performed effectively and gave a solution 
within 0.5% of the global optimum.

GAs with mixed continuous discrete coding with a four-point 
crossover are well fitted for the proposed optimization problem and 
demonstrate the following advantages in application:

•	 GAs have no special demand for initial values of decision variables. 
The initial population of strings is chosen randomly as long as it 
does not violate the constraints for the problem.

•	 As is evident from the computation results, GAs yield highly 
satisfactory global optimum. 

•	 Due to the parallel computing nature GAs result in faster 
convergence in comparison with MINLP.

•	 GAs are simple in structure and are convenient for implementation, 
with no more complicated mathematical calculation than such 
simple operators as encoding, decoding, testing constraints, and 
computing values of objective.

•	 GAs are successfully used in many applications including 
multiproduct batch plant design turns out to be quite logical.

•	 In this framework, the GAs with an effective mixed continuous 
discrete coding method with a four point crossover operator gave 
us the high efficiency and justifies its factibility use for solving non-
linear mathematical models with the uncertainties parameters.

•	 Finally, this framework provides an interesting decision/making 

approach to improve design multiproduct batch plants under 
conflicting goals. 
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