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Mechanisms of BCR-ABL in the pathogenesis 
of Chronic Myeloid Leukemia (CML): A 

Review

Abstract
The most frequent myeloproliferative condition among chronic neoplasms is chronic myeloid leukemia (CML). CML was the first blood 

malignancy to be linked to a recurrent chromosomal change, a reciprocal translocation between chromosome 9’s long arms and the Philadelphia 
chromosome 22. Ph not only compromises genomic stability but also damages physiological signaling pathways in leukemia. The breakpoint cluster 
region-proto-oncogene tyrosine-protein kinase (BCR-ABL) oncogenic protein with continuously increased tyrosine kinase activity is encoded by 
this abnormal fusion gene. The kinase activity is responsible for cell proliferation, differentiation inhibition, and cell death resistance, and we present 
an overview of tyrosine kinase activity and inhibitors in relation to leukemogenesis here. The focus of this review will be on BCR-ABL-independent 
processes, with a particular focus on those with therapeutic implications in the treatment of CML patients.
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Introduction
Leukemia is a heterogeneous group of hematopoietic disorders 

which includes several diverse and biologically distinct subgroups 
[1]. It usually starts with the bone marrow which results in the 
development of alterations in white blood cells. These white blood cells 
are not fully developed and are called blasts cells [2]. This uncontrolled 
proliferation of white blood cells (leukocytes) in the bone marrow and 
lymphatic system leads to progression towards a leukemic state [3] as 
shown in (Figure 1).

Differentiation of leukemia is based on the developmental phases 
of the disease (acute or chronic), the cells involved (lymphoid or 
myeloid), and the type of blood cells affected, depending on the stages 
of disease progression [5]. Acute lymphoid leukemia (ALL), acute 

myeloid leukemia (AML), chronic lymphoid leukemia (CLL), and 
chronic myeloid leukemia (CML) are the four primary subtypes of 
leukemia. ALL and AML progress quickly, necessitating more severe 
treatment to extend the patient’s life expectancy, but CLL and CML 
progress more slowly and may lie untreated for year [6]. .CML is a 
form of CML that has a higher survival rate than the other subtypes 
and is triggered by chromosomal translocation.

Incidence 

The American Cancer Society (ACS) estimated that 8990 new 
cases of CML were diagnosed in 2019, out of which 5250 were males 
and 3740 females [7]. CML  the commonest adult leukemia and the 
annual  incidence  ranges from 0.8-2.2/100,000 population in males 
and 0.6-1.6/100,000 population in females in India [8].
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Figure 1: Showing the difference between normal cells and leukemia cell [4].

Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a clonal myeloproliferative 
disorder characterized by the Philadelphia (Ph) chromosome, which 
results from t(9;22) (q34;q11) balanced reciprocal translocation [9].

The molecular consequence of the Philadelphia chromosome is the 
generation of the BCR- ABL oncogene that encodes for the chimeric 
BCR-ABL oncoprotein, with constitutive kinase activity that promotes 
the growth advantage of leukemia cells as shown in (Figure 2).

Figure 2: A reciprocal translocation t (9:22) produces the Philadelphia chromosome leading to Chronic Myeloid Leukemia (CML).

Mechanism of Chronic Myeloid Leukemia 
(CML)

The t (9;22) Philadelphia chromosome (Ph) produces the BCR/ABL 
fusion oncogene in 3 main types (P190, P210, and P230). Different 
markers in the BCR gene on chromosome 22 produce these proteins 
[10]. These oncogenes produce three separate fusion proteins with 
molecular masses of 190, 210, and 230 kD, respectively, that contain 
the similar portion of the c-ABL tyrosine kinase in the COOH 
terminus but varied in the amount of BCR sequence at the NH2 
terminus. Consistent genomic recombination between two genes 
BCR on the long arm of chromosome 22 and ABL on the long arm 
of chromosome 9 results in their juxtaposition, resulting in the BCR-
ABL fusion gene [11].

The genomic breakpoints for BCR and ABL are highly variable 

although recombination frequently occurs when intron 1, intron 
13/14, or exon 19 of BCR are fused with a 140-kb stretch of ABL 
between exons 1b and 2 [12]. The fusion of BCR exon 13 and ABL exon 
2 (e13a2) or e14a2 (p210 BCR- ABL1) forms the main BCR- ABL1 
transcript (M- BCR, formerly known as b2a2 and b3a2) [13] lly found 
in CML, however it can also be found in ALL or AML The minor BCR-
ABL1 transcript (m-BCR) encodes a hybrid 190-kDa protein that is 
encoded by p190 BCR-ABL (e1a2) as shown in (Figure 3).

Figure 3: Showing BCR- ABL translocation with three breakpoint 
regions. Exon e1 of BCR and a2 of ABL fuse they form e1a2 (p190) 
minor BCR- ABL breakpoint. When exon b2 of BCR and exon a2 of 
ABL fuse they form major b2a2 or b3a2 (p210) BCR- ABL breakpoint 
and last breakpoint is when e19 of BCR and exon a2 of ABL fuse they 
form p230 BCR-ABL. 

https://doi.org/10.51626/ijor.2025.06.00037
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Figure 3: Showing BCR- ABL translocation with three breakpoint regions.

Importance of BCR-ABL in Subtypes of 
Leukemia

Acute Lymphoblastic Leukemia

BCR-ABL1 is not only limited to CML. It is also present in 11%-29% 
of ALL patients [14]. but is relatively rare in childhood ALL (1%-3%) 
[15]. The p210BCR-ABL transcript is detected in 30% of adults and 20% of 
childhood patients with Ph-positive ALL [16]. The BCR-ABL variant 
e3a2 (exon 3 of BCR and exon 2 of ABL) is also detected in some 
cases of Ph-positive ALL, which is similar to ALL with p190 BCR-

ABL transcript [17].

Acute Myeloid Leukemia

BCR-ABL  transcripts are hardly found in AML [18]. Ph-positive 
AML is cytogenetically indistinguishable from Ph-positive CML, 
but molecular studies show that, in 50% of cases, the breakpoint 
on chromosome 22 in Ph-positive AML is different from those 
very consistently found in CML [19]. Some studies have confirmed 
that  BCR-ABL -positive AML is unique acute leukemia with some 
features distinct from myeloid CML-BC [20].  as shown in (Table 1).

Table 1: Showing some cytogenetic Abnormalities Leading to Positive and Negative CML Progression.

Cytogenetics Abnormalities Leading to the expression of Deregulated Tyrosine Kinase in Chronic Myeloid Leukemia

Cytogenetic Abnormality
Tyrosine Kinase Fusion 

Protein
Disorder Reference

t(9;22) (q34;q11) BCR- ABL

Chronic Myeloid 
Leukemia

[21-23]

Acute Myeloid 
Leukemia

[24]

Acute Lymphoblastic 
Leukemia

[25]

t(8;22) (p11;q11) BCR-FGFR1
BCR- ABL-negative 

CML
[26,27]

t(8;22) (p11;q11) BCR-PDGFRA A typical CML [28,29]

t(9;12) (q34;p13) TEL- ABL
Atypical CML or 

BCR- ABL negative 
CML

[30-32]

t (9;22) (p24; q11) BCR-JAK2
Atypical CML or 

BCR- ABL negative 
CML

[33-35]

Downstream Signaling Pathway of BCR- 
ABL Kinase

  The ABL protein shuttles between the cytoplasm and the nucleus; 
when fused to BCR, the oncoprotein loses this property and is mainly 
retained within the cytoplasm, where it interacts with the majority 
of proteins involved in the oncogenic pathway [36]. ABL tyrosine 
kinase activity is constitutively activated by the juxtaposition of 

BCR, thus favoring dimerization or tetramerization and subsequent 
autophosphorylation [37]. This increases the number of the phosphor 
tyrosine residues on BCR-ABL and, as a consequence, the binding 
sites for the SH2 domains of other protein (38). Ras mitogen-
activated protein kinase (MAPK) leading to increased proliferation, 
the Janus-activated kinase (JAK)–STAT pathway leading to impaired 
transcriptional activity, and the phosphoinositide 3-kinase (PI3K)/
AKT pathway resulting in increased apoptosis [39].

https://doi.org/10.51626/ijor.2025.06.00037
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Ras and the Mitogen-Activated Protein kinase Pathways 

 BCR- ABL binds directly to proteins that activate Ras [40].  
Autophosphorylation of tyrosine 177 generates a binding site for the 
adapter molecule Grb-2 [41]. Grb2 associates with the Sos protein, 
which stimulates the conversion of the inactive GDP-bound form of 
Ras to the active GTP-bound state [42]. Ras also may be activated by 
two other adapter molecules, Shc and CrkL (CRK like protein), which 
are substrates of BCR- ABL [43]. Activated Ras binds to the serine-
threonine kinase Raf-1, recruiting it to the plasma membrane where 
it is activated by tyrosine phosphorylation and initiates a signaling 
cascade by way of the mitogen-activated protein kinase (MAPK) 
pathway (44).

Janus kinase– signal transducer and activator of transcription 
pathway 

 Phosphorylation of members of the signal transducer and activator 
of transcription (STAT) family of transcription factors has been 
reported in BCR ABL–positive cells. STATs are phosphorylated by 
Janus kinases (JAK) that are downstream of growth factor receptors 
[45]. In contrast, phosphorylation of STAT5 in BCR- ABL - expressing 
myeloid cells appears to be mediated by the Src family kinase, Hck, 
which binds the SH2 and SH3 domains of BCR- ABL [46]. JAK2 
pathway targets BMI1 (oncogene) member of PRC1 and PRC2 
complex. BMI1 and PRC complex help in chromatin remodeling and 
mutation in BMI1 can disrupt the P14ARF and P16Ink4A [47]. which 
leads to leukemogenesis. 

Phosphatidylinositol 3 Kinase Pathway
  The proliferation of the BCR- ABL signaling pathway mostly is 

dependent on PI-3 kinase [48]. BCR- ABL apparently activates this 
pathway by forming a multimeric complex with PI-3 kinase and the 
adaptor molecules CBL and Crk. In BCR- ABL–expressing cells, 
activated PI-3 kinase stimulates the serine-threonine kinase Akt [49]. 
Besides, activated Akt may function in an antiapoptotic capacity [50]. 
Bad promotes cell death by binding to and thereby inactivating the 

antiapoptotic Bcl-2 and Bcl-Xl [51]. Thus, phosphorylation of Bad by 
Akt may prevent it from binding to these proteins, resulting in reduced 
apoptosis. Indeed, increased Bad phosphorylation was seen in BCR-
ABL positive with Bad completely dephosphorylated, a fraction of 
cells survived, indicating the existence of Bad-independent survival 
pathways [52].

TP53 Pathway 

  The TP53 mutation rate is known to increase with CML disease 
progression, a 30% reported rate of BC CML cell mutations [53]. 
PI3K activates  MDM2 which is regulated by Bcr-Abl and may play 
an essential role in the progression of CML. the activation of p53 via 
MDM2 inhibition induces cell death and enhances the efficacy of 
chemotherapeutic agents in hematological malignancies [54]. Over 
expression of MDM2 has been reported to correlate with nutlin3a 
sensitivity in both AML and ALL [55].as shown in (Figure 4). 

Figure 4: Cytoplasmic BCR- ABL1 signaling pathways activated in 
chronic myeloid leukemia (CML) cells.

  Imatinib mesylate binds to the ATP-binding site in the kinase 
domain of the BCR/ ABL tyrosine kinase, thus preventing ATP 
binding and activation of the kinase [56]. Several highly potent next-
generation BCR- ABL inhibitors have been developed to overcome 
imatinib resistance and improve the prognosis of patients with CML. 
These include novel and more potent multi-TKIs such as dasatinib, 
an orally bioavailable dual BCR- ABL and Src inhibitor, and potent 
selective BCR- ABL inhibitors such as nilotinib [57]. Dasatinib blocks 
BCR- ABL at low concentrations but is less selective than imatinib 
[58]. Similarly, to imatinib, it inhibits BCR- ABL, Kit, and platelet-
derived growth factor receptor (PDGFR) and blocks Src, Tec, and Eph 
kinases. Nilotinib blocks BCR- ABL at lower concentrations but, like 
imatinib, it appears to be more selective than dasatinib in targeting 
tyrosine kinases [36]. Imatinib thus induced the complete hematologic 
responses in more than 95 percent of patients with CML [59].as shown 
in (Figure 5).

Figure 4: Cytoplasmic BCR- ABL1 signaling pathways activated in chronic myeloid leukemia (CML) cells.

https://doi.org/10.51626/ijor.2025.06.00037


5

Citation: Amrita B, Ruchi S, Bhat GR, et al. Mechanisms of BCR-ABL in the pathogenesis of Chronic Myeloid Leukemia (CML): A Review. Int J Onco Radiother. 
2025; 6(1): 1-7. DOI: 10.51626/ijor.2025.06.00037

Mechanisms of BCR-ABL in the pathogenesis of Chronic Myeloid Leukemia (CML): A Review

Figure 5: Mechanism of action with imatinib (A) The constitutively active BCR- ABL tyrosine kinase functions by transferring phosphate from ATP to tyrosine 
residues on various substrates to cause excess proliferation of myeloid cells leading to the formation of leukemia. (B) Imatinib blocks the binding of ATP to the 
BCR- ABL tyrosine kinase, thus inhibiting kinase activity.

Figure 5: Mechanism of action with imatinib (A) The constitutively 
active BCR- ABL tyrosine kinase functions by transferring phosphate 
from ATP to tyrosine residues on various substrates to cause excess 
proliferation of myeloid cells leading to the formation of leukemia. (B) 
Imatinib blocks the binding of ATP to the BCR- ABL tyrosine kinase, 
thus inhibiting kinase activity.

Imatinib directly inhibits the constitutive tyrosine kinase activity, 
which results in the modification of the function of various genes 
involved in the control of the cell cycle, cell adhesion, cytoskeleton 
organization, and finally in the apoptotic death of leukemic cells [60]. 
As a result, the transmission of proliferative signals to the nucleus is 
blocked and leukemic cell apoptosis is induced [61]. Therapy with 
imatinib mesylate results in a durable and complete cytogenetic 
response in the early stages of CML.

These findings can act as a predictive or prognostic biomarker for the 
earlier diagnosis of leukemia. The findings of the study will pave a way 
for designing therapeutic interventions.

Conclusion
The BCR-ABL chimeric protein plays central role in the pathogenesis 

of chronic myeloid leukemia and Acute myeloid leukemia. The 
translocation leads to persistent TK activation and genomic instability 
during leukemogenesis. Disorders in multiple signaling pathways 
and genetic abnormalities combined with the Ph are essential for the 
evolution of different types of leukemia. A greater understanding of 
leukemogenesis and the effect of treatment on clonal evolution will 
provide novel insights into the design of future therapeutic strategies 
for Ph-positive leukemia.
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