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Introduction
The nesting problem, also known as the unloading problem. It refers 

to the slitting out of a variety of parts of different lengths from a speci-
fication of the material to maximize the utilization rate of the material. 
According to the dimensionality of raw materials, nesting problems 
can be classified into the following categories: one-dimensional blank-
ing problems, two-dimensional blanking problems, and three-dimen-
sional blanking problems during COVID-19 pandemic. Depending 
on the type of part, one-dimensional nesting problems can be divided 
into one-dimensional nesting problems with a single specification (the 
length of raw materials are equal) and one-dimensional nesting prob-
lems with multiple specifications (different lengths of raw materials).

According to the quantity of raw materials, it can be divided into 
complete unloading (the quantity of raw materials is sufficient to ob-
tain all required profiles) and incomplete unloading (the number of 
raw materials is limited, only part of the demand profiles can be ob-
tained) problems. The one-dimensional blanking problem belongs to 
the NP problem, the number of solutions is incalculable, and it cannot 
be solved using a simple exhaustive method, so some accurate math-
ematical models are needed to describe it.

 Mathematical Models
In the nesting problem, some mathematical models are often needed 

to represent the solution results, and the quality of the model is related 
to the quality of the results. This section describes two common math-
ematical models.

1)  Kantorovich model [1] 

where: m is the total number of raw material roots of the unloading, 
i is the serial number of the raw material, i = 1, 2,3,….,m, n is the 
number of parts to be unloaded, j is the serial number of the part, j = 
1,2,3,…..,n, lj is the length of the part j, dj is the demand quantity of the 
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part j, L is the length of the raw material, xij is the number of cutting 
roots of the first part in the i root raw material, yi is the variable 0-1, if 
the i root raw material is used for the blanking, then yi =1, otherwise 
yi =0.

2)	 Gilmore-Gomory model [2]

 where: i is the part serial number, i = 1, 2,3,......,n, j is the unloading 
mode serial number, j = 1,2,3,….,m, and cj is the cost of using the 
jth unloading mode; aij is the number of cuts in the part i in the un-
loading mode j; xj is the number of raw materials required to use the 
j-type unloading mode.

Analyse
There are the following examples: there are 1 m long raw materials, 

now need to get 0.2m long 3, 0.3m long 4, 0.4m long 1, 0.5m long 
2, how to cut the most economical material. In the second section, 
two mathematical models are introduced. The objective function of 
the Kantorovich model is the total number of roots consumed by the 
raw material, and the decision function is that the number of parts of 
a single kind needs to be greater than the number of demanded parts, 
and the length of each raw material needs to be greater than all the 
parts obtained from the raw material. Using the results of the model, 
two results may appear as shown in (Figure 1, Figure 2), wherein the 
first way is 0.2m, 0.3m, 0.5m for a group, cut two, 0.3m, 0.3m, 0.4m for 
a group, cut one, 0.2m for a group, cut one; The second way is 0.2m, 
0.3m, 0.5m for a group, cut two, 0.2m, 0.3m, 0.4m for a group, cut one, 
0.3 m for a group, cut one. Comparing the two methods, both meet 
the Kantorovich model, but the utilization rate obtained at this time is 
obviously different [3-12].

Figure 1: The first cutting method.

Figure 2: The second cutting method.

In the Gilmore-Gomory model, there is a m-seed unloading pattern, 
where the objective function is the scrap rate of raw materials, and the 
decision function is consistent with the Kantorovich model. For the 
Gilmore-Gomory model, the problem on the Kantorovich model was 
solved to some extent, but it would undoubtedly cost more time before 
waiting for the results. Comparing the two models, the Kantorovich 
model solves the time cost, while the Gilmore-Gomory model saves 

materials, and the choice of the two modes should be combined with 
the production reality, balancing the relationship between time and 
material [12-19].

Summary
Mathematical thought refers to the spatial form and quantitative re-

lationship of the real world reflected in human consciousness, through 
the thinking activities and produce a result, it is the basic view of deal-
ing with problems in mathematics, is a summary of the basic know-
ledge of mathematics and the essence of basic methods, is the guide-
line for the creative development of mathematics [22-26]. Through 
the cultivation of mathematical ideas, the ability of mathematics will 
be greatly improved. To master mathematical ideas is to master the 
essence of mathematics. For mathematics, the ultimate goal must be 
to combine it with reality, and mathematics divorced from reality is 
meaningless. In industry, mathematics is often linked to increasing the 
number of productivity, utilization, etc., and to improve these values, 
more accurate mathematical models are needed, so our learning of 
mathematics should be more in-depth and not stagnant [27-35].

Conflict of interest
We have no conflict of interests to disclose and the manuscript has 

been read and approved by all named authors.

Acknowledgments
This work was supported by the Philosophical and Social Sciences 

Research Project of Hubei Education Department (19Y049), and the 
Staring Research Foundation for the Ph.D. of Hubei University of 
Technology (BSQD2019054), Hubei Province, China

References
1.	 Kantorovich LV (1960) Mathematical Methods of Organizing and Plan-

ning Production. Management Science 6(4): 366-422.

2.	 Gilmore PC, Gomory RE (1961) A linear programming approach to the 
cutting stock problem. Operations Research 9(2): 849-859.

3.	 Babu AR, Babu NR (2001) A generic approach for nesting of 2-D parts 
in 2-D sheets using genetic and heuristic algorithms. Computer-Aided 
Design 33(12): 879-891.

4.	 Baker BS, Coffman EG, Rivest RL (1980) Orthogonal packings in two 
dimensions. SIAM Journal on Computing 9(4): 846-855.

5.	 Baldacci R, Boschetti MA, Ganovelli M, Maniezzo V (2014) Algorithms 
for nesting with defects. Discrete Applied Mathematics 163(1): 17-33.

6.	 Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinator-
ial optimization: a methodological tour d’horizon. European Journal of 
Operational Research 290(2): 405-421.

7.	 Bennell JA, Oliveira JF (2008) The geometry of nesting problems: A 
tutorial. European Journal of Operational Research 184(2): 397-415.

8.	 Cherri LH, Cherri AC, Soler EM (2018) Mixed integer quadratically 
constrained programming model to solve the irregular strip packing 
problem with continuous rotations. Journal of Global Optimization 
72(1): 89-107.

9.	 Cherri LH, Mundim LR, Andretta M, Toledo FM, Oliveira JF, et al. 
(2016) Robust mixed-integer linear programming models for the ir-
regular strip packing problem. European Journal of Operational Re-
search 253(3): 570-583.

10.	 Chryssolouris G, Papakostas N, Mourtzis D (2000) A decision-making 
approach for nesting scheduling: a textile case. International Journal of 
Productions Research 38(17): 4555-4564.

11.	 Dowsland KA, Vaid S, Dowsland WB (2002) An algorithm for polygon 
placement using a bottom-left strategy. European Journal of Operation-
al Research 141(2): 371-381.

12.	 Elkeran A (2013) A new approach for sheet nesting problem using 
guided cuckoo search and pairwise clustering. European Journal of 
Operational Research 231(3): 757-769.

https://doi.org/10.51626/ijide.2022.03.00034


3

Citation: Zhao B, Jiang X. Mathematical Analysis on Troubleshooting Problem During Covid-19 Pandemic. Int Jr Infect Dis & Epidemlgy. 2022;3(5):1‒3. 
DOI: 10.51626/ijide.2022.03.00034

Mathematical Analysis on Troubleshooting Problem During Covid-19 Pandemic

13.	 Gahm C, Uzunoglu A, Wahl S, Ganschinietz C, Tuma A (2022) Apply-
ing machine learning for the anticipation of complex nesting solutions 
in hierarchical production planning. European Journal of Operational 
Research 296(3): 819-836.

14.	 Leao AA, Toledo FM, Oliveira JF, Carravilla MA, Alvarez-Valdés R 
(2020) Irregular packing problems: A review of mathematical models. 
European Journal of Operational Research 282(3): 803-822.

15.	 Pinheiro PR, Júnior BA, Saraiva RD (2016) A random-key genetic al-
gorithm for solving the nesting problem. International Journal of Com-
puter Integrated Manufacturing 29(11): 1159-1165.

16.	 Plisnier H, Steckelmacher D, Roijers DM, Nowé A (2019) Transfer re-
inforcement learning across environment dynamics with multiple ad-
visors.

17.	 Rakotonirainy RG (2020) A machine learning approach for automated 
strip packing algorithm selection. ORiON 36(2): 73-88.

18.	 Sato AK, Martins TC, Gomes AM, Tsuzuki MSG (2019) Raster penetra-
tion map applied to the irregular packing problem. European Journal of 
Operational Research 279(2): 657-671.

19.	 Sutton RS, Barto AG. Reinforcement learning: an introduction 2nd 
Edn. MIT Press; 2018.

20.	 Toledo FM, Carravilla MA, Ribeiro C, Oliveira JF, Gomes AM (2013) 
The dotted-board model: A new MIP model for nesting irregular 
shapes. International Journal of Production Economics 145(2): 478-
487.

21.	 Akunuru R, Babu N (2013) Semi-discrete geometric representation for 
nesting problems. International Journal of Production Research 51(14): 
4155-4174.

22.	 Baldacci R, Boschetti M, Ganovelli M, Maniezzo V (2014) Algorithms 
for nesting with defects. Discrete Applied Mathematics 163(1): 17-33.

23.	 Bennell J, Oliveira J (2008) The geometry of nesting problem: A tutorial. 
European Journal of Operational Research 184(2): 397-415.

24.	 Burke E, Hellier R, Kendall G, Whitwell G (2010) Irregular packing 
using the line and arc no-fit polygon. Operations Research 58(4): 948-
970.

25.	 Cherri L, Carravilla M, Toledo F (2016) A model-based heuristic for 
the irregular strip packing problem. Pesquisa Operacional, 36(3): 447-
468.

26.	 Gomes AM (2013) Irregular packing problems: Industrial applications 
and new directions using computational geometry. IFAC-Proceedings 
46(7): 378-383.

27.	 Gomes AM, Oliveira J (2002) A 2-exchange heuristic for nesting prob-
lems. European Journal of Operational Research 141(2): 359-370.

28.	 Kierkosz I, Luczak M (2019) A one-pass nesting problems. Operations 
Research and Decisions 29(1): 37-60.

29.	 Leao A, Toledo F, Oliveira J, Carravilla M (2015) A semi-continuous 
MIP model for the irregular strip packing problem. International Jour-
nal of Production Research 54(3): 712-721.

30.	 Leao A, Toledo F, Oliveira J, Carravilla M, Alvarez-Valds R (2020) Ir-
regular packing problems: A review of mathematical models. European 
Journal of Operational Research 282(3): 803-822.

31.	 Pinheiro PR, Amaro Junior B, Saraiva RD (2016) A random-key gen-
etic algorithm for solving the nesting problem. International Journal of 
Computer Integrated Manufacturing 29(11): 1159-1165.

32.	 Sato A, Martins T, Gomes A, Tsuzuki M (2019) Raster penetration map 
applied to the irregular packing problem. European Journal of Oper-
ational Research, 279(2): 657-671.

33.	 Sato A, Martins T, Tsuzuki M (2016) A pairwise exact placement algo-
rithm for the irregular nesting problem. International Journal of Com-
puter Integrated Manufacturing 29(11): 1177-1189.

34.	 Sato AK, Tsuzuki MSG, Martins TC, Gomes AM (2016) Study of the 
grid size impact on a raster based strip packing problem solution. 
IFAC-Papers On Line 49(31): 143-148.

35.	 Toledo F, Carravilla M, Ribeiro C, Oliveira J, Gomes AM (2013) The 
dotted-board model: A new MIP model for nesting irregular shapes. 
International Journal of Production Economics 145(2): 478-487.

https://doi.org/10.51626/ijide.2022.03.00034

