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Introduction
Since the World Health Organization announced coronavirus dis-

ease (COVID-19) as a pandemic, the global number of Confirmed 
New Cases (CNCs) of COVID-19 were hitting record as of mid-Au-
gust 2020 [1,2]. Amid such a helpless circumstance, its spread in South 
Korea seemed to slow down in terms of the CNCs. During the initial 
stage, the highly infectious nature of this novel virus caused panic 
among both the general public and health authorities, which remains 
to cause a lot of concern regarding the eradication of this disease. At 
the initial stage of spread, several quick reports had predicted the size 
of the epidemic and temporal evolution of the disease based on math-
ematical models [3-5].

Ever since the outbreak of the COVID-19 pandemic, health author-
ities have reported the daily accumulated number of CNCs to the pub-
lic, and it appeared that the pandemic curve was steadily saturating, 
with the number of CNCs randomly scattered. As the disease seems to 
be approaching an ending stage in certain communities, it is import-
ant for the health authorities to be capable of statistically estimating 
the number of exposed hosts regardless of the disease’s symptoms. A 
statistical inference on the number of cases in a given city or province 
can give clues to when they could statistically declare an eradication 
of the disease in the community, within a certain level of confidence. 

Traditionally, there have been two approaches to modeling the evo-
lution of infectious diseases: deterministic and stochastic. The deter-
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ministic approach is based on a system of Ordinary Differential Equa-
tions (ODEs). Dependent variables such as the number of susceptible, 
exposed, and infected ODEs evolve in a deterministic pattern from 
a set of initial values. The deterministic methods are not realistic in 
that all variables are treated as real numbers. The stochastic approach 
can supplement them by considering observation noises and process 
noises of infectious diseases by chance [6]. The result of the stochastic 
method asymptotically converges to that of the deterministic method 
as the number of computational trials increase. Moreover, it is the only 
method that can uniquely demonstrate the extinction of the disease at 
a final stage [6]. In the final stage, where the numbers of CNCs are ran-
domly scattered, the stochastic approach can statistically predict the 
number of individuals in each state of a disease progress. The number 
jumping from one state to the next follows a probability distribution, 
parameters of which are described by the transmission rates.

In this study, we first verified a Discrete-Time Stochastic Method 
(DSM) obeying binomial distribution in comparison with the other 
method. Following which, the Markov Chain Monte Carlo (MCMC) 
method was applied to create Bayesian inferences on the number of 
exposed hosts in several regions of South Korea, where we used a prior 
distribution with less information and a binomial likelihood, and the 
daily reported data of CNCs. The regions include five metropolitan 
cites and a province in South Korea, where the numbers of CNCs re-
mained significant as of August 2020. The inferences were conducted 
over a period of an entire month and over five sub-periods to depict the 
temporal evolution of the whole period. The inferences were reported 
in terms of probability density distributions. Finally, we performed a 
simple temporospatial correlation analysis between the regions at dif-
ferent sub-periods to show evidence of inter-regional transmissions. 

Data 
The Korean Center for Disease Control and Prevention (KCDC) 

has been reporting the spread of the COVID-19 pandemic in South 
Korea every day on their website. We collected data on the number 
of CNCs daily of five metropolitan cities and the Gyeonggi province 
surrounding Seoul [7]. The numbers of CNCs excluded quarantined 
individuals entering South Korea. Figure1 demonstrates the dataset 
collected between July 11, 2020 and August 11, 2020. The population 
size of the cities and provinces, as of July 2020, were collected from 
the website of the Ministry of Public Administration and Security 
[8]. To infer the number of exposed hosts, it is essential to know the 
progress rate, κ = 1/4 (1/day), the inverse of which is the incubation 
period of the disease. To verify the DSM, we adopted the following 
model parameters: transmission rate β= 0.5 and isolation rate α= 1/4 
(1/day). These parameters were applied to predict the time evolution 
of COVID-19 in South Korea [3]. The transmission rate was obtained 
from the reproduction number ratio in COVID-19 cases of Daegu and 
North Kyongsang Province during early stages of its rapid spread [4].

Methods
Stochastic SEIHR Models

In stochastic compartment models, the transitions between the 
compartments or states are determined by their transition rates. In the 
SEIHR model, the compartments consist of susceptible (S), exposed 
(E), infected (I), hospitalized (H), and recovered (R) states. The de-
terministic models share transition rates with stochastic SEIHR mod-
els. The stochastic models can be simulated by Event-Driven Method 
(EDM) and DSM. EDM is the most realistic in mimicking the tran-
sition between discrete states [6], which can be implemented using 
Gillespie’s algorithm [9]. However, DSM is faster in computation and 
simpler in implementation than EDM. Thus, to replace EDM with 
DSM, it is necessary to confirm the computational accuracy of DSM 
in comparison with EDM.

DSM was applied to study a behavior-disease model by [10] and re-
cently, COVID-19 by [11], where it was assumed that a set of chains 
through an infection progress is generated following binomial distri-
butions of the transitions of individuals within a discrete unit of time. 
Each member in a state at time t has a probability with the relevant 
transition rate multiplied by a time interval Δt, during the interval be-
tween t and t+Δt, and jumps to the next state at time t+Δt. The number 
of newly exposed individuals E+, transiting from the susceptible state 
to the exposed state during interval Δt, is a random variable obey-
ing a binomial distribution of Bin[S(t), βΔtI(t)⁄N], where S(t) is the 
number of susceptible hosts at time t. Similarly, the number of newly 
confirmed individuals I+, at time t+Δt, is a random variable following 
a binomial distribution of Bin[E, κΔt] [11]. Considering all possible 
transition rates, a Markov chain with the net numbers in the states 
{S(t), E(t), I(t), H(t), R(t)| t = 0, Δt, 2Δt, …} is formed. The next state 
of the system is determined by the current state through a part of the 
Markov chain relations:

S (t + Δt) = S(t) – E+

= S(t) – Bin [S(t),βΔtI(t)/N],   (1)

E (t + Δt) = E(t) + E+ – I+

= E(t) + Bin [S(t), βΔtI(t)/N] – Bin [E(t),κΔt],                   (2)

I (t + Δt) = I(t) + I+ – H+

= I(t) + Bin [E(t), κΔt] – Bin [I(t), αΔt]   (3)

Markov Chain Monte Carlo (MCMC) Method 

MCMC refers to a class of methods for sampling from a probability 
distribution to construct a distribution with the most likelihood. This 
method consists of two techniques: Monte Carlo and Markov chain. 
Monte Carlo is a general technique that relies on a series of continuous 
random sampling to obtain a numerical solution. When the sampling 
forms a Markov chain through the Markov process, it is not necessary 
to know the entire history of the sampling process to make the next in-
ferences [12]. Owing to this advantage, MCMC method has been used 
for Bayesian inferences. Among several MCMC packages, PyMC3 is 
the most recent open-source package written in Python. Computa-
tional models can be specified directly in Python code for automatic 
Bayesian inferences [13].

Assuming that the number of newly confirmed individuals I+ obeys 
a binomial distribution, as shown in Section 5.1, the computational 
model for this study is proposed by defining a prior on the number 
of the exposed as a discrete uniform distribution with both lower and 
upper limits, and a likelihood distribution as binomial distribution, 
as such

Prior (E) ~ Uniform (lower =0, upper),                        

                                                                                                  (4)

Likelihood ~ Binomial (E, κΔt; X),       

                                                                                                       (5)

where E is the number of exposed hosts and X is a set of n observed 
data points. Using the number of daily CNCs as the observed data and 
the prior number of exposed, this model allows the MCMC method to 
generate the samples of a target posterior distribution on a number of 
exposed hosts. The prior uniform distributions were selected so that its 
upper limit was sufficiently high to provide less prior information on 
the number of exposed hosts. In all the inferences, two chains of sam-
pling were obtained by the Metropolis sampler with a sample number 
of 2,000 or 5,000, following a tuning process with 1,000 samples. 

https://doi.org/10.51626/ijide.2022.03.00023
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Results
Validation of DSM in Comparison with EDA

To validate DSM in terms of computational accuracy, the progress 
of COVID-19 was repeatedly calculated by both stochastic models 
of DSM and EDA using the model parameters described in Section 
2 (DATA). (Figure 2) shows 500 traces of the calculation using both 
methods, of which the mean is depicted in solid black lines. The upper 
plots were obtained using DSM and the lower plots by EDA using Gil-
lespie’s algorithm. At a glance, the difference in scatters between both 
methods was insignificant. Comparing the mean of traces from both 
methods, the peak positions of the infected population agrees within 
5% in x-axis and 10% in y-axis, respectively. These computations in 
Python 3.0 with a laptop computer took 1.4 s and 57 s for DSM and 
EDA, respectively. 

The Numbers of Exposed Hosts in the Regions for a Month

As shown in (Figure 1), which represents the data set for a month, 
the daily reported number of CNCs in the regions appeared random-
ly scattered. We created Bayesian inferences on a number of exposed 
hosts in each region for the entire period using the MCMC method, 
as shown in (Figure 3). The upper limits of the discrete uniform distri-
bution of the prior were selected as 100 for Seoul and Gyeonggi, and 
as 50 for other regions. Reducing such upper limits to two-thirds does 
not significantly change the posterior. This confirms that the infor-
mation from the prior was weak and the inference mainly depended 
on the observed data through the most likelihood. The plots on the 
right-hand side depict sampled values (y-axis) from the posterior dis-
tribution for the sampling numbers (x-axis, 5000 times). The plots on 
the left-hand side represent Probability Density Functions (PDFs) ob-
tained by the sampling results on the right-hand side. The x-axis and 
y-axis represent the number of exposed hosts and probability density, 
respectively. Each PDF with a color on the left-hand side corresponds 
to the Markov chain with the same color on the right-hand side. 

Figure 1: Daily reported number of confirmed new cases of COVID-19 in 5 
metropolitan cites and Gyeonggi province of South Korea between July 11 and 
August 11, 2020.

In general, a PDF provides much more information than point esti-
mations of the mother population, such as its mean, Standard Devia-
tion (SD), and confidence interval of the mean. If the distribution does 
not appear normal, as shown in (Figure 3), it is highly recommended 
to represent the statistics in the PDFs. The repeatable PDFs, given by 
two independent samplings, ensured that the samplings and the re-
sultant inferences were acceptable. In (Table 1), the PDFs are summar-
ized in terms of the mean, SD, and Highest Posterior Density (HPD) 
interval between 3% and 97%. Note that the HPD intervals in (Table 
1) are expressed in natural numbers because the priors were discrete 
uniform distributions and the sampling outputs were integers.

Figure 2: Comparison of two stochastic methods: the binomial chain method 
(BCM) and event-driven approach (EDA) in predictions of time evolutions of 
the pandemic, of which the model parameters are relevant to those of an early 
stage of COVID-19 in South Korea. The computation trials were 500 times. In 
addition, EDA applied Gillespie’s algorithm.

Figure 3: The inferences on the regional number of exposed hosts repre-
sented by the samples (the right-hand side) obtained by the MCMC method 
and its probability density distributions (the left-hand side). These inferences 
used observed data reported daily for a month between July 11 and August 11, 
2020.

The Numbers of Exposed Hosts in the Regions for Five Sub-Per-
iods

We repeated the Bayesian inference on the number of exposed hosts 
in the regions while moving an observation window with a width of 10 
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days over the entire period. The period was divided into 5 sub-periods 
with an interval of 10 days for this study to infer the numbers of ex-
posed hosts in all regions as a function of the sub-periods. The halves 
of the intervals overlapped with the adjacent (next and/or previous) 
intervals to reveal moving averages as the sub-period changes. The 
sub-periods are denoted by titles on all plots in (Figure 4), which can 
be interpreted similarly as shown in (Figure 3), except that all region-
al distributions are simultaneously plotted on a plot. Again, each plot 
on the right-hand side shows 2,000 sampled values, while each plot 
on the left-hand side represents PDFs. Some PDFs clearly overlapped: 
Gyeonggi/Gwangju in Period 0, Busan/Incheon in Period 1 and 2, 
Gwangju/Incheon and Seoul/Gyeonggi in Periods 3 and 4. (Table 2) is 
included to help readers discriminate between the overlapped PDFs. 
(Table 2) summarizes the PDFs in (Figure 4) in terms of the mean, SD, 
and HPD interval between 3% and 97%. The HPD interval in Bayesian 
statistics roughly corresponds to the confidence interval of classical 
statistics. For instance, we can statistically inform the relevant health 
authority that the number of exposed hosts between 30 and 39 existed 
with a confidence level of 95% in Seoul between 11 and 22 July 2020.

Figure 4: Posterior probability density distributions (the left-hand side) of 
regional number of exposed host and samples (the right-hand side) for the 5 
sub-periods, in which the entire period was divided, with 5 days overlapping, 
to observe temporal drifts of the probability distributions.

Figure 5: Temporospatial correlation analysis charts between different re-
gions and two time periods. The upper chart (a) is for the period between July 
11 and August 11 and the lower (b) for the period between July 11 and August 
16, 2020.

Temporospatial Correlations of Numbers of the Confirmed New 
Cases (CNCs)

When deciding whether it is necessary to include an inter-regional 
transmission in a mathematical model of infectious diseases, a simple 
temporospatial correlation analysis may be useful. During the period 
between July 11 and August 11, 2020, a maximum of 10 CNCs in a 
day were reported in Gwangju, while zero to two CNCs were intermit-
tently reported in Daejeon. The KCDC confirmed that cases in these 
two cities were connected due to a mutual gathering of some of their 
residents. We constructed a correlation coefficient chart, as shown in 
(Figure 5(a)), which shows the highest correlation coefficient (0.63) 
between the two cities. Considering negative coefficients as a noise 
level, the correlation between Gwangju and Daejeon is temporally the 
most significant in all different combinations.

A few days after August 12, rapid increases in CNCs were reported 
in Seoul and regions (Incheon and Gyeonggi) around Seoul. (Figure 
5(b)) shows the correlation coefficient chart reconstructed for the per-
iod between July 11 and August 16, 2020. It shows the strongest cor-
relation of 0.95 between Seoul and Gyeonggi and the second strongest 
correlation of 0.86 between Seoul and Incheon. It is also worth noting 
that the correlation between Seoul and Busan has grown to a similar 
level of correlation (0.54) between Gwangju and Daejeon. 

Discussion
We have validated DSM in comparison with EDA, which is more 

fundamental in the stochastic methods. With a trial computation 
number of 500, the discrepancy between the mean of the traces was 
less than 10%. Even if we expect the discrepancy to decrease as the 
number of trials increases, we can accept 10% as the computational 
accuracy of DSM for the inferences. Considering the simplicity of im-
plementing DSM and a high computational speed, 40 times faster than 
EDA, we may consider the inaccuracy of DSM to be compensated by 
these advantages.

Owing to the randomness in the daily reported numbers of CNCs 
during the entire period under investigation, as shown in (Figure 2), it 
is not easy to distinguish a significant trend or pattern in each region. 
Therefore, using the MCMC method, we created Bayesian inferences 
of the number of exposed hosts, which was a source of the new cases 
(Figure 3) shows the posterior distributions of the number in each 
region. The peak positions and shapes of the PDFs differ region to 
region. The distributions of Seoul and Gyeonggi have more normal 
distributions than the other regions. This is because the binominal 
distribution converges to a normal distribution as the trial number (in 
this case, the trial number is the number of exposed hosts) increases. 
As shown in (Table 1), the normality of the distributions of Seoul and 
Gyeonggi reflects the fact that the confidence interval (mean ± 2SD) 
almost agrees with the interval between PHD 3% and PHD 97%. On 
the other hand, because of the small numbers of exposed hosts, the 
other regions show different uncertain behaviors. Regions with num-
bers less than 10 are expected to have deterministic numbers (9 in 
Busan, 4 in Incheon, and 2 in Daejeon) with a confidence level of 95%.

Looking into (Table 2) and (Figure 4) allows us to identify significant 
temporal changes in the mean for few regions such as Seoul and Gyeo-
nggi. In the case of Seoul, the mean over Period 3 is significantly less 
than that over Period 0 and 1. Gyeonggi shows a steady increase until 
Period 2 following a slight decrease, and finally results in an overlap 
with Seoul over Period 3. Then, both regions show increases in the 
mean during Period 4. In the case of Gwangju, where an inter-regional 
transmission with Daejeon was reported, it steadily decreased until 
Period 3. This decrease was synchronized with that of Daejeon, where 
regional eradication was expected after Period 1. Since a significant 
appearance of exposed hosts has not been reported at Period 0, Bu-
san has shown a steady increase in the number until Period 4 after no 
significant appearance of exposed hosts during Period 0. This increase 
is contradictory to other regions, which might be reflected in some of 
the negative correlation coefficients, as shown in (Figure 4). It has been 
confirmed that the cases in Busan had a separate transmission chain 
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triggered by an international vessel with its sailors anchored to the 
Busan International Harbor.

The arguments from (Table 2) and (Figure 4) are consistent with the 
regional correlation coefficient chart for a certain period between July 
11, 2020 and August 11, 2020, as shown in (Figure 5(a)). The nega-
tive correlation coefficient of Busan with other regions, except Gyeo-
nggi, did not seem to be of noise; however, it was related to a different 
transmission channel. As shown in (Figure 5(b)), the regional cor-
relation chart, including more data for several days after August 12, 
shows the strongest correlation of 0.95 between Seoul and Gyeonggi, 
which seems to be led by a rapid increase of CNCs in both regions. 
This abrupt increase may have originated from Period 4, as expected 
in previous arguments. Such an increase in Seoul and Gyeonggi also 
made it reasonable to raise concerns that it could have affected and 
refired a mass infection in Daejeon, where at least a temporary local 
eradication could have been declared according to previous statistical 
inference.

In summary, when approaching an ending stage of infectious dis-
eases such as the COVID-19 pandemic, the daily reported number of 
CNCs may appear random, and it is natural to be curious about how 
many exposed hosts statistically exist in a certain community. Not-
ing that the number of CNCs follows a binomial distribution with an 
unknown number of exposed hosts and the probability of a success-
ful new case generation with the progress rate κ, the MCMC method 
enables us to infer the numbers of exposed hosts in the community. 
Using the data of CNCs reported daily by the KCDC, we demonstrated 
how to create a Bayesian inference on the number of the exposed hosts 
for a certain period of time. Dividing the entire period into sub-per-
iods allows for additional inferences regarding the temporal evolution 
of results. Additionally, we demonstrated that the additional temporo-
spatial correlation analysis can substantially deepen the knowledge 
obtained by the Bayesian inference alone, using the MCMC method. 
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