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Introduction
West Nile virus (WNV) first emerged in North America in New 
York City in 1999 [1]. Since that time, the area has remained an 
important focus of WNV transmission. From 1999-2020, there have 
been 47 fatal human cases of WNV within New York City’s five 
boroughs [2].  A surveillance and control program in NYC began 
upon the emergence of the virus in 1999, with mosquito trapping 
and virus assays conducted throughout the summer [3]. Passive dead 
bird collection and testing were also carried out. In the order of the 
sequence, the following integrated mosquito management measures, 
including extensive public outreach, intensive source reduction, and 
need-based larviciding were continuously conducted in at-risk areas 
until transmission risk has been subsidized to minimal [2].  In mid-
late summer, ultra-low-volume (ULV) adulticiding (spraying for adult 
mosquito control) was applied, when warranted [4]. Spray treatment 
areas were selected based on the ongoing presence of WNV among 
the captured mosquitoes. We similarly considered successive weeks of 
increasing mosquito density and noted when the “mosquito counts 
exceeded 50 per trap-day in the area”. The areas that matched these 
conditions were designated as virus-activity hot-spots. 

Evaluation of mosquito control campaigns for mosquito-borne 
diseases in big cities presents significant difficulties. The landscape 
of the area is large, heterogeneous, and unique, which complicates 
comparisons between treated and untreated areas. In addition, data 
were often collected separately by different groups. Similarly, analyses 
of such data often result in distinct domain models (for vectors, 
disease reservoirs or human cases), and typically aimed at assessing 
the value of a particular index, such as dead birds, to develop an early 
warning system [5,6]. 

Recent developments in relational Bayesian networks (RBN) provide 
a method to integrate rich, but independent data sets from multiple 
sources [7-10]. In this analysis, data are associated in time and space 
using synthetic variables - variables that capture and leverage the 
underlying relationships among data tables- much like queries in a 
relational database [11]. RBN is a representation of the structure of the 
joint probability distribution over the abovementioned variables [10]. 
We used data collected in New York City from 2001-2003 to construct 
BRN that infer relationships between birds, mosquitoes, and humans. 
BRN takes advantage of both quantitative information and expert 
opinion, and is updated as new information is input. This methodology 
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is suited to mosquito control efforts, and has previously been applied 
to estimate risk of mosquito-borne disease [10,12]. Current efforts to 
model the efficacy of treatments are generally lacking, and thus RBN 
offers a promising remedy. 

Material and Methods
A summary of WNV surveillance results and disease control measures 
conducted in the 2001-2003 mosquito seasons is given in Table 1. 
The data used in this study were collected by the Office of Vector 
Surveillance and Control within the New York City Department of 
Health and Mental Hygiene. The data contain 70 human cases, 474 
WNV positive birds, 717 WNV positive mosquito pools and 158 
treatment zones, as well as information about weather and landscape 
type collected from 2001 through 2003. Since the adulticiding 
(spraying for adult mosquito control) was carried out as the last resort 
to target infected mosquitoes, while spray events were used as the 
reference point in this analysis to evaluate the efficacy of our disease 

control strategy.

For our RBN analysis, we stored the geo-referenced, time-stamped 
(date of event or finding) data in tables. The elements of an RBN 
system are data stored in relational form, whose variables are drawn 
from the relational data, and machine learning algorithms that fit the 
model to the data. We restricted our analysis to areas that had been 
treated for WNV. The observation of West Nile Virus among humans, 
infected birds, and mosquito-pools in a treated area were amassed in 
tables. Similarly, relationships to standing water, open space, and tidal 
areas were captured as table, while information about spray zones was 
stored as polygons. The WNV positive mosquito and bird reports were 
described with respect to a virus-activity hot-spot or treatment area 
and date of spray, and other mosquito management measures listed 
in Table 1. 

For this modeling effort, the species of mosquitoes and birds were 
partitioned into the following groups:

Table 1: Summary of West Nile virus activity and preventive and control measures conducted during the mosquito season.

Activity/Variables 2001 2002 2003

West Nile Virus Surveillance

Human cases 9 29 32

Dead birds tested 666 738 779

WNV infected dead birds 172 140 162

Mosquito pool tested 6,415 6,984 7,555

WNV infected mosquito pools 243 199 275

Preventive and Control Measures

Public Outreach (Events-Days) 12 28 42

Larviciding

Catch-basins 1,59,112 2,42,100 3,23,906

Ground (acres) 26 180 346

Adulticiding

Events 6 12 20

Treatment zones 21 51 113

Treated acres 9,044 29,166 50,494

Mosquitoes

 ■ Bird-feeding Culex: Culex pipiens, Culex restuans, Culex pipiens-
restuans

 ■ Bridge vectors: Culex salinarius, Aedes vexans, Coquillettidia 
perturbans, Aedes triseriatus

 ■ Recent introduction: Aedes albopictus

Birds

 ■ Tree-roosting birds: crows, blue jays, mourning doves

 ■ Shrub-roosting birds: American robins

 ■ Ground-dwelling birds: sparrows, cardinals

 ■ Marsh-roosting birds: grackles

 ■ Building-roosting birds: starlings

Since our goal was to observe the impact of adult mosquito control on 
the probable transmission of the virus, we also build a complementary 
model of spray zones. The variables in the spray zone model were:

Total birds, positive birds, by group

 ■ 1-7 days

 ■ 8-14 days

 ■ 15-21 days

 ■ 22-30 days after spray

Total and positive mosquito abundance, by group

 ■ day before spray

 ■ day after spray

 ■ 2-7 days

 ■ 8-14 days

 ■ 15-21 days

 ■ 22-30 days after spray

We used proprietary software (CleverSet® Modeler) to discover 
the relational Bayesian networks that best fit the data for initial 
model creation, and later “expert knowledge” was incorporated for 
constructing subsequent models. The initial RBN is not guaranteed 
to be unique. However, it would serve as a starting point for more 
rigorous experimental evaluation, particularly when the relationships 
among these elements are not well known and data are sparse. The 
final RBM – a spray-zone based model – was created after relating all 
the variables  of interest that correlated to the occurrence  of human 
cases, positive birds, and positive mosquitoes before and after spraying 
in the treatment zones. 
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Based on expert knowledge, we constructed variables that resembled 
database queries describing statements about the relationship among 
the organisms of interest, spray status, and the environment at specific 
temporal and spatial resolutions. For example, one variable in the 
spray zone RBN was the “number of positive bird-feeding Culex in 
a spray zone the day after the spray”. Another example was a variable 
describing a bird case from the perspective of human cases such as 
the “number of ground-dwelling birds that tested positive for West 
Nile virus found within 2 miles and two weeks prior to a human 
case.”. However, the statements about landscape did not contain time 
information, while statements about the weather did not contain 
spatial information, as these respective variables were taken as uniform 
across time and space. 

Results and Discussion
In our analysis, spatio-temporal models were constructed by dividing 
time and space into spatio-temporal cells (STCells). The occurrence 
of human cases, bird cases, and positive mosquito pools was analyzed 
within the entire set of STCells across time and space. For the human 
case-based model, only those spatial cells were considered in which at 
least one human case had occurred and which modeled the occurrence 
of other human cases and positive birds and positive mosquito pools at 
specific time intervals. In the spray zone-based model, we considered 
human cases, bird cases, and positive mosquito pools that occurred in 
areas that had been treated for larval and adult mosquito control and 
evaluated for WNV activity prior to and following spray treatment. In 
the initial analysis, the algorithm was allowed to learn the Bayesian 
networks, with minimal human supervision (machine learning). The 
goal of this phase of the evaluation was to verify that it was possible to 
detect relationships between mosquitoes and birds, humans and birds, 
and humans and mosquitoes. In the second phase, expert knowledge 
was applied to search for evidence of core biological relationships, 
which, if present, would provide evidence of sustained transmission. 
Lastly, two scales of analysis were evaluated (0.025-degree square by 

one-week and 0.05-degree square by one-week STCells) to observe 
whether the observed effects were evident at different spatial scales.

Much like a moving average, the RBN was discovered using variables 
containing information about spatio-temporal relationships in the 
data. However, unlike a moving average, the RBN captures the joint 
probability distribution among the variables described at different 
spatial and temporal resolutions simultaneously [13]. Linkages among 
these variables indicates likely relationships among these elements and 
their most probable spatial and temporal resolutions.

The final model (spray zone RBN) revealed conditional dependencies 
among ground-dwelling birds in a spray zone two weeks after spray 
and (1) any mosquitoes the day after spray, (2) positive bird-feeding 
Culex the day after spray, and (3) bird-feeding Culex the week after 
spray (Table 2). In the “0.025 degrees by one-week” resolution model, 
human cases largely correlated with the presence of positive ground-
dwelling bird. Positive bird-feeding Culex the day after spray, even in 
low numbers, was the most predominant indicator for the presence of 
positive ground-dwelling birds two-weeks after spray (83.33 percent). 
When the RPM was rerun at the courser resolution of “0.05-degree 
square by one-week”, the relationships were not as crisp as those in the 
higher resolution model (0.025-degree by one-week), suggesting that 
this spatial scale is too large-grained to capture relationships among 
the core biological organisms involved in the transmission of West 
Nile virus [14]. 

To assess the predictive power of the model, we partitioned the data 
into a training (80 percent of data) and testing (remaining 20 percent 
of data) and generated ROC (receiver operating characteristic) curves 
showing the tradeoff between correct detections of the event of interest 
(vertical axis) and false alarms (announcements of the event when it 
has not, in fact, occurred; horizontal axis) (Figure 1). A random model 
exhibits an ROC extending from the lower left of the graph to the 
upper right. Here, we notice an abrupt rise of the ROC, which shows 
that, given the data, the model is highly predictive. 

Table 2: Conditional probabilities for presence or absence of positive ground-roosting birds 15-21 days after spray conditioned on (1) any mosquitoes the day after 
spray, (2) positive bird-feeding Culex the day after spray, and (3) bird-feeding Culex the week after spray. Note that low probabilities of mosquitoes remaining after 
spray (shaded rows) are associated with low probabilities of positive ground roosting three weeks after spray. Positive bird-feeding Culex remaining the day after 
spray is the most predominant indicator for the presence of positive ground-dwelling birds two-weeks after spray (83.33 percent).

Parameters Probability of positive ground dwelling birds 15-21 days after spray

Conditioned on Absent Present

Number of mosquitoes of any type present the day after spray

0 99.85 0.15

1 87.5 12.5

2-127 69.35 30.65

Number of positive bird feeding Culex present the day after spray

0 98.16 1.84

Jan-14 16.67 83.33

Number of positive bird feeding Culex present 8-14 days after spray

0 99.85 0.15

01-Nov 12.5 87.5

12-437 79.03 20.97

This approach provides a “best guess” about complex relationships in 
an integrative analysis. Since the RBN analyzes the same data from 
multiple points of view, it can detect subtle, pre-statistical results from 

data. These results represent a more complex outcome than can be 
obtained from traditional statistical analyses, and provide insight as to 
where analytical resources might best be focused for targeted results.
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Figure 1: Receiver Operating Characteristic for presence of positive ground-dwelling birds 15-21 days after spray.
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