
International Journal on Engineering Technologies and Informatics

Volume 6 Issue 1- 2025

Research Article

Author Details

Asia Othman Aljahdali*, Dalya Bokhari, Wejdan Alghamdi

Cybersecurity Department, College of Computer Sciences and Engineering, University of Jeddah, Saudi Arabia

*Corresponding author
Dr. Asia Othman Aljahdali, University of Jeddah, Cybersecurity Department, College of Computer Sciences and Engineer-
ing, Saudi Arabia

Article History
Received: April 11, 2025 Accepted: April 17, 2025 Published: April 21, 2025

Detection Of Metamorphic Malware Through
Opcode and Api Call System Using Machine

Learning

©2025 Asia. This work is published and licensed by Example Press Limited. The full terms of this license are available at https://skeenapublishers.com/terms-conditions and incorporate the Creative Commons Attribution – Non Com-
mercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Emample
Press, provided the work is properly attributed.

Abstract
Malware is continually evolving, forcing security analysts and researchers to keep pace by improving their cyber defenses. The sophistication

and diversity of malicious software presents significant challenges to protecting computer systems and networks against intrusion. The increase
of malicious software has been amplified because of the adoption of obfuscation techniques, which are employed to elude detection and conceal
its underlying purpose. Antivirus software uses different techniques that are insufficient for detecting metamorphic malware because they can
change the internal structure of the code while keeping the same functionality. Most organizations completely rely on commercial antivirus soft-
ware that uses signature-based detection techniques to find any vulnerabilities. Code obfuscation techniques can successfully evade the previous
technique. To overcome the previous limitations of traditional antivirus engines and keep up with new cyberattacks and variants of malware,
researchers began adopting machine learning to enhance their approaches because machine learning is well suited for processing huge amounts
of data. This paper presents a novel approach to detect metamorphic malware efficiently, we propose an efficient model for metamorphic mal-
ware detection by using seven different machine learning methods such as support vector machines, decision trees, random forests, naive bays,
k-nearest neighbours, logistic regression, and stochastic gradient descent for the classification. We also propose a feature selection method to
enhance the classification and detection of metamorphic malware, based on opcode and API call features, and analyse the detection accuracy
result to understand the feature impact on metamorphic malware detection. Our model achieved a high accuracy rate for all datasets using
decision trees and random forest classifiers. We also discovered that dominant features play a significant role in improving detection rates.

Keywords: Metamorphic Malware; Malware Detection; Machine Learning; Dynamic Analysis

Introduction
The constant growth of digital transformation in all aspects of life

has led to more potential security threats appearing daily, which can
easily invade the privacy and integrity of data as well as affect or in-
terrupt system functionality and performance. Malware is one of the
most significant and grave hazards to cybersecurity, governance, or-
ganizations, and individuals. It is composed of malicious software.
Viruses, worms, Trojans, spyware, adware, ransomware, rootkits, key-
loggers, and other similar classifications are included [1]. since mal-
ware enters a system without the consent of the user and carries out
undesirable acts that affect the security principles of confidentiality,
availability, and integrity (CIA) and is designed to cause corruption
to computer systems and compromise user security, such as stealing

data from the host system and corrupting other executable files’ code,
infecting system files, and writing large amounts of data to memory.
Malware targets a variety of platforms, including servers, PCs, mobile
phones, and smart devices. However, modern malware is also created
for financial gain, to destroy a nation’s defenses systems, or to exert
political influence. Malware can infect your computer in a variety of
ways, including through the download of free or legitimate software
from the internet that includes hidden malware, downloading email
attachments containing malware, visiting an infected website, clicking
off a fake error message that launches malware, etc. [2] The statistical
analysis from AV-Test shows a huge growth in malware every day. In
2022, 96,516.839 new malware pieces were created.

Malware detection and classification have become crucial research

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 2

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

areas in cyber security because new malware generations have used
obfuscation and evasion techniques to avoid detection and thus pro-
duce more sophisticated dynamic malware, such as metamorphic mal-
ware. [2] Metamorphic malware is capable of mutating itself with each
infection into a new form to hide the malicious code without changing
its functionality by using obfuscation techniques. Code obfuscation
can be accomplished by dead-code insertion, register exchanging, in-
struction permutation and reordering, and instruction replacement.
[3] We will discuss this obfuscation technique in Section III. A var-
iety of methodologies exist to detect malware, encompassing signa-
ture-based, behaviour-based, heuristic-based, normalization-based,
and machine learning-based approaches. Signature-based detection
is a prevalent method utilized by commercial products for malware
detection. However, it lacks the capability to identify novel, uniden-
tified, and sophisticated malware, including metamorphic malware,
which leads to zero-day attacks. Most organizations completely rely
on commercial antivirus software that uses signature-based detection
technology to find any vulnerabilities or intrusions. This weakens or-
ganizations’ defenses against metamorphic malware, which is a strong
motivation for study and development into their detection [4].

Due to the increase in sophisticated malware and the legacy of sig-
nature-based detection, it is required to use an automated approach
to reduce human involvement and enhance the accuracy of the detec-
tion method. We suggest machine learning (ML), which is commonly
used to effectively classify and detect malware as well as spam mail [5].
Furthermore, it is very successful because it can deal with significant
volumes of data, such as API calls, assembly code (Opcode), and byte
code, which humans find unacceptable. Based on a variety of types of
data that affect the overall detection and classification performance,
ML approaches include support vector machines (SVM), naive bayes
(NB), and decision trees (DT).

In this research, we aim to enhance and increase the accuracy of
detecting metamorphic malware and future mutations. The primary
concept is to utilize a machine learning model that uses a large dataset
to ensure the accuracy rate of the selected methodology. The subse-
quent sections of the paper are structured in the following: Section
II discusses the background concepts, and structure of metamorphic
malware. Section III presents a metamorphic malware analysis. Sec-
tion IV discusses metamorphic malware detection techniques. Section
V studies the related works. Section VI presents the research method-
ology (the machine learning model). Section VII presents the research
experiments and evaluation. Section VIII covers the conclusion and
recommendations for future work.

Background
Malware Overview

Malware is malicious software. It is like any other software applica-
tion but has malicious intentions. Malware comes in a variety of sim-
ple and complicated forms, including polymorphic and metamorphic
malware. Malware can execute itself locally or be remotely managed
through the Internet. Malware has a wide range of actions it can con-
duct to achieve its objectives. These actions could be described as the
following: corrupt, access, or delete file activity, registry activity, run
or modify undesirable service activity, mutex activity, process activity,
runtime DLL activity, and network activity [4].

Malware can be classified into two distinct categories: first-gener-
ation and second-generation. In the first generation, the malware’s
structure is unchanged, but in the second generation, each malware
variation has a different internal structure while still performing the
same behaviours. Second-generation malware is further divided into
encrypted (packing), oligomorphic, polymorphic, and metamorphic
malware based on how variations in malware are generated [1].

Metamorphic malware is the most challenging threat in the cyber

security world; it is highly sophisticated and reduces the importance of
signature-based detection. Metamorphic malware exhibits body-poly-
morphism, wherein it generates a new form while maintaining its ori-
ginal functionality, instead of generating a new Decryptor. Just like
polymorphic malware, obfuscation techniques can be employed to
generate new iterations. We discuss the details of metamorphic mal-
ware, obfuscation techniques, and how to detect this type of malware
[1].

Metamorphic Malware Structure and Behaviour

Metamorphic malware acts as though it automatically mutates itself
each time it propagates or is distributed to a new host. It modifies its
syntax or structure during each propagation to avoid signature-based
detection while preserving its malicious functionality. Although
its functionality is semantically identical, it modifies its code using
semantics-preserving transformations to make one malware variant
look very different from another. To prevent the same detection from
being effective on all mutated variants, Metamorphic malware pos-
sesses an 80% morphing engine, which functions by taking the 20%
malicious code as input and dynamically altering it during runtime to
produce a syntactically distinct yet semantically comparable version
[1].

Two copies of the same malware can be significantly different from
each other by repeatedly obfuscating, and most detection techniques
are unable to fully recognize metamorphic malware. Obfuscation tech-
niques such as dead code insertion, register substitution, instruction
replacement, instruction permutation, and code reordering/transpos-
ition. In 2000, the Win32/Ghost virus was created with 362,880 differ-
ent variants [1]. One of the strongest metamorphic malwares, W32/
NGVCK, was created in 2001 with the help of the Next Generation
Virus Creation Kit (NGVCK) [2].

The components of a metamorphic engine are a disassembler, a
code analyser, a code transformer, and an assembler. When the virus
finds the location of its code, it requires converting the code into as-
sembly instructions, which is handled by an internal disassembler.
The code analyser is responsible for providing essential information
for the code transformer module. The code transformer needs some
essential information, such as the structure and flow diagram of the
program, subroutines, duration of variables and registers, and so on.
This information helps the code transformer work appropriately. The
code transformer, or obfuscator, is the brain of the mutation engine.
It is responsible for obfuscating the code and modifying the binary
sequence of the virus. The other modules are designed to provide the
requirements of the obfuscation module. It may use several obfusca-
tion techniques and finally convert the newly produced mutated as-
sembly code of the virus into machine binary code by the last module,
Assembler [2]. Metamorphic malware cannot be detected with signa-
ture-based detection because professional metamorphic malware can
create an infinite number of variants that behave similarly and do not
have a single pattern used to detect them. Therefore, to detect power-
ful metamorphic infections, antivirus scanning engines must adopt
highly developed heuristics and behaviour-based detection methods
[3] (Figure 1).

Obfuscation Techniques

The obfuscation technique makes malware difficult to detect. It
changes a malicious code to a new different version while preserving
the same functionality. The primary purpose of this technique was to
protect the intellectual property of software developers. Later, mal-
ware developers exploited this technique to hamper detection and
analysis, Polymorphic and metamorphic malware use this technique.
Metamorphic malware uses several different techniques to evade de-
tection and make it more difficult to be analysed and understand [22],
it changes its codes into new generations but keeps the same malicious
functionality [4].

https://doi.org/10.51626/ijeti.2025.06.00087

3

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

Figure 1: Assembly of replicator and mutation engine in Metamorphic virus [3].

Obfuscation adds unnecessary instructions or garbage/dead to an
existing code to change the structure while keeping the same behav-
iour [7]. The binary sequence of a malicious code is changed without
affecting the original functionality. Obfuscation techniques will be
discussed below in detail [8]:

Dead Code Insertion/ Garbage code insertion

The insertion of dead code or garbage code is the simplest way to
modify the binary sequence of the virus program without affecting the
functionality or behaviour of the code but confusing and overloading
the emulator during code analysis [9], such as instruction NOP does
not have any functionality, the instructions do not alter the content
of CPU registers or memory There are several types of dead codes.

Register Swapping/ Register Exchanging

The virus instruction operands are saved in various registers in this
method for each new infection, it replaces another unused register for
the use of a register in an instruction. It implies switching registers or
memory variables of various malware variants and changing the bi-
nary sequence of the code, this does not affect a program’s behaviour,
but it evades signature-based detection [7].

Instruction Replacement/Substitution

In this obfuscating technique, instruction is replaced with equivalent
instruction by keeping the same functionality but changing the code
with a library of equivalent instructions. The branch conditions can
be reversed, register moves can be replaced by push/pop sequences,
alternate opcode encoding, and xor/sub and or/test interchanging are
examples of instructions that can be substituted.

Instruction Permutation/Reordering

In this method reorder the sequence of instructions, without
changing the result. Through this rearranging process, binary sequen-
ces of the code look different in various generations [4].

Code reordering

This method restructures the sequences of binary code. It accom-
plishes this by employing sophisticated transfer of control or jump
instructions as the foundation for obfuscation, while preserving func-
tionality and restoring the original program execution flow via uncon-
ditional or conditional branches. The reordering may be executed at
the level of individual instructions or entire blocks of code. [3] [7].

Metamorphic Malware Analysis

The impact of malware analysis and the nature of the data involved
have become increasingly influential in the process of detection. This
impact extends to the classification of files during investigations, thus
affecting the overall accuracy of detection models. Malware analysis is

an important process of malware detection to understand the malware
structure, its main characteristics, and functionality, Different essential
elements are discovered during analysis and reveal information about
malware functionality. Before developing effective detection systems,
and must be performed analysis malware first [2]. There are three pri-
mary methods of analysis: static, dynamic, and hybrid. Various forms
of data have been retrieved through the utilization of static, dynam-
ic, and hybrid analysis techniques. These include Byte code, Opcode,
API calls, file data, registry data, and other relevant data sources. The
objective of this analysis is to gain a comprehensive understanding of
the files under examination and afterwards classify them as either mal-
ware or benign files based on their primary function [10].

Static Analysis

Static analysis is the process that malicious files can be identified
without actually executing on the device. Because malware is not run,
static analysis is safer than dynamic analysis. It is divided into two
categories, including basic static analysis and advanced static analy-
sis. Basic static analysis reveals the malicious program’s version, file
format, and any suspicious imports, in addition to other basic infor-
mation. Basic static analysis is quick and easy, but ineffective since it
can lose important information. Advanced static analysis deals with
structure analysis, which requires an understanding of operating sys-
tem principles, assembly language, and compiler code. Examining the
malware’s internal code allows it to analyse the functionality of the
malware. Through this analysis, information can be obtained about
the identification of malware, passwords, libraries, URLs, and pro-
gramming languages. Mutants and function routines can be found.
The code may be disassembled and decompiled using advanced static
analysis. Static analysis, however, is unable to deal with packing and
obfuscation. Although it indicates packing, the binary must be un-
packed for static analysis to be successful [8].

When conducting static analysis on binary executables or source
code, a wide range of static data can be gathered. This includes data
from the portable executable header (PE-header) as well as derived
data such as string-based entropy and compression ratio. Further-
more, researchers have the option to utilize other tools, like the IDA
Pro disassembler and Python-based modules, for the purpose of gath-
ering static opcode and API call data. Despite the ability of static an-
alysis to trace all potential execution pathways, it is susceptible to the
influence of packing and encryption methodologies [4]. There are two
main advantages of static analysis. First, since malware doesn’t need to
be executed during analysis, it is safe. Second, it gives more detailed
information about malware’s execution paths.

Dynamic Analysis

Dynamic analysis is s carried out in a virtual environment to prevent
the malware from actually infecting computer systems. Dynamic an-

https://doi.org/10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 4

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

alysis involves running a malicious program and observing its runtime
characteristics before analysing it. Malicious behaviours are observed
and recorded. The malware unpacks itself during this time, and modi-
fications it makes to the system are also observable. the basic dynamic
analysis is observing the basic behaviours that malware executes, such
as the creation of new processes, file activities, or registry activities
[2].

On the other hand, advanced dynamic analysis thoroughly exam-
ines the internal state of a malicious program that is now executing.
It performs a thorough internal inspection to get more detailed infor-
mation on the malicious behaviours and employs advanced debugging
techniques to single-step through the infected code. Any hidden code
obtained by packing is disclosed during runtime code analysis. A mal-
ware’s identity is dynamically determined. Function calls, parameter
analysis, and information flow are all depicted. The activities of files,
processes and dynamic link libraries (DLL) are disclosed. The dynam-
ic analysis aids in the detection of packing and obfuscation properties
as well as metamorphic mutations. It is possible to perform memory
analysis. Examined is how malware interacts with the file system, pro-
cesses, and network [4]. A variety of data can be gathered through the
implementation of a dynamic analysis methodology. Malicious activ-
ities can be depicted through the analysis of executable file behaviour
and the preservation of memory images during runtime. The identifi-
cation of executable file behaviours involves the collection of executed
API calls, machine actions, file-related data, as well as registry and net-
work data. Opcode-based memory pictures have the potential to serve
as dynamic representations of harmful operations. When dynamically
conducted, the analysis of obfuscated malware reveals its activities,
although dynamic analysis fails to meet all harmful circumstances ne-
cessary for detecting all execution routes [10].

There is a list of tools for dynamically analysing malware and per-
forming advanced and specific monitoring of some functionalities
including, Process Monitor, Process Explorer, Regshot, NetCat,
Wireshark, OllyDbg, etc [9]. Advantages of dynamic analysis include
handling packed files, analysing massive malware corpora auto-
matically, and investigating real-time malware behaviour. The dis-
advantages of dynamic analysis include, it costs a lot to compute and
uses a lot of system resources, the potential for missing out on some
execution paths when malware under monitoring goes dormant, the
risk of a network-capable malware infecting the host system from the
virtual environment, and the difficulty of monitoring malware that can
refuse to execute when run in a virtual environment [1].

Hyper Analysis

When malware has more complex code, basic static analysis is ineffi-
cient, and complex malware can occasionally evade detection by sand-
box technology. The best of both methods can be achieved by combin-
ing the two different malware analysis methodologies. In addition to
extracting many more features from statically generated and previous-
ly unobserved code, hybrid analysis can find hidden malicious code. It
can identify unknown threats, including those coming from the most
advanced malware.Data extracted using static and dynamic analysis
were combined to minimize the limitations of each analysis method
and increase detection rates. Different tools, including Cuckoo Sand-
box, IDA Pro Disassembler, and Olley’d, are used to gather dynamic
and static data, and then hybrid feature sets are built based on several
types of data, such as strings, opcodes, API calls, and others [10].

Metamorphic Malware Detection Techniques

Advanced malware developers deploy a variety of obfuscation strat-
egies and techniques to avoid detection. As previously mentioned in
this paper, code packing, polymorphism, and metamorphism are the
most commonly used obfuscation techniques. The process of detecting
malware is the mechanism that needs to be implemented to uncover
and identify the malicious activities of the files under investigation. As
a result, many malware detection methods are improving year after

year without a unique approach, which does not provide 100% success
with all types of malware and families in all situations. Malware, par-
ticularly metamorphic malware, is notoriously difficult to detect. By
constantly mutating its internal structure while remaining inside an
infected system, it poses an interesting threat. As a consequence, the
malware was discovered utilizing four malware detection techniques
based on signatures, behaviours, heuristics, and newly developed ma-
chine learning, which were based on the two primary characteristics of
malware: signatures and behaviours. Therefore, developing a reliable
method for detecting metamorphic malware is essential. The methods
for malware detection are discussed in the sections that follow [1].

Signature-based detection

Signature detection is the most common technique in virus protec-
tion software. Signature detection is based on unique signature pattern
matching, in which a sequence of bits against malware is stored in a
malware database, signatures pattern stored in the database has to be
previously extracted to compare the given testing files’ signatures, to
an updated database of signatures and make a final decision based on
the matching state. When an anti-virus scans the system, it looks for
programs with signatures in the malware database. If a file is matched
with the files in the malware database, it is marked as malware, too, and
thus used later for malware signature matching. This approach cannot
detect malicious files for which no signatures have been recorded yet.
It is not capable of detecting zero-day attacks and sophisticated mal-
ware like metamorphic and is readily overcome by straightforward
code obfuscation techniques. Because of their low false positive rate
and low processing cost, the majority of antivirus programs employ
this strategy [8]. The advantages of using signature-based detection
are speed and accuracy. Along with this, the disadvantage of using sig-
nature detection is Any new malware would never be detected by these
static detectors. Thus, the malware database needs to be constantly
updated. Even a small obfuscation will cause this detection technique
to break. Thus, dynamic analysis is required for the virus’s dynamic
behaviours [1].

Anomaly-based detection

This detection approach is based on monitoring and analysing be-
haviours during the runtime of malware in a controlled environment
(a virtual machine or sandbox), then determining if the given file is
following normal behaviour or not [10]. It overcomes the limits of sig-
nature-based detection by using heuristic approaches to detect nor-
mal behaviour. After monitoring the executable files in an isolated en-
vironment and collecting the observed behaviours, features extraction
techniques were developed to extract the sensitive features that will
allow the developed model to classify the known malicious behaviours
as well as any behaviour that appears to be similar to them in terms
of false positive behaviours. The ability to identify novel malware be-
haviours in addition to known ones using run-time behaviour collec-
tion has made this approach more valuable than signature-based ap-
proaches. As a result, the majority of the studies in the review focused
on using behavioural-based approaches to increase malware detection
ratios in the form of continuous, sequential, and common behaviours.
Any file that does not classify as normal is then classified as malicious
software. The definition of anomalous and normal is defined by the
user, so the classification is not very accurate. A malware detector has
been developed for classifying input files based on file structure. A test
file requiring classification is provided for detector input. The file is
classified as abnormal if it appears to be, otherwise, it is marked as be-
nign. After classification, it is examined to determine whether it was a
malicious malware file or simply a false positive. Detecting an anomaly
can have a large number of false positives or false negatives. Therefore,
anomaly detection is used with signature detection to provide greater
accuracy [1].

Heuristic-based detection

This method has been used in many studies to support the model-

https://doi.org/10.51626/ijeti.2025.06.00087

5

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

ling of identifying and detecting malicious malware through the es-
tablishment of generic rules that use extracted data that is provided by
dynamic or static analysis as rule input. There is no single type of data
that is commonly used with this approach, but the researchers have
mostly used all types of data at the same rate, including API calls, net-
work data, registry data, imported DLL, and others. In addition, the
creation of generic rules plays a major role in the final discussion of
malware detection and classification [11]. A heuristic-based approach
has two approaches to detecting malicious software. Firstly, in the stat-
ic approach, a suspicious program is disassembled to find a match with
the known malware pattern, if any. If the result of the scan exceeds the
preset threshold, then the program is labelled as infected. Secondly, in
the dynamic approach, code emulation techniques are used by simu-
lating the processor and operating system to detect suspicious oper-
ations (an attempt to open other executable files to modify its con-
tent, changing the Master Boot Record, concealing themselves from
the operating system, etc.) on a virtual machine. The resulting rules of
the two approaches can be created manually according to the exper-
tise and experience of professional analysts or by automatically using
machine learning techniques, the YARA tool, and other technologies
based on expert knowledge of analysis. Several studies have been done
to develop malware detection models by which decisions have been
taken based on the automated behavioural rules that are created using
machine learning techniques and the YARA tool. On the other hand,
based on statically extracted string data [10].

Machine learning detection

Malware detection using machine learning techniques has grown
in popularity in recent years and is commonly used for the detection
and classification of malware as in [12]. This method is very successful
because it can deal with massive amounts of data, such as Application
Programming Interface (API) calls, assembly code (Opcode), and byte
code, which is unacceptable for humans. ML techniques provide a
high degree of generality, have become an active domain in the field of
cybersecurity, and have an impact on high detection and classification
accuracy. Naive Bayes, decision trees, data mining, neural networks,
vector machines, and hidden Markov models are popular machine
learning techniques among researchers for detecting 2nd generation
malware. This technique is not intended to replace standard detection
methods but rather to supplement them [10] Robert Moskov itch et al.
proposed malware detection based on computer behaviour monitor-
ing (features). His evaluation results show that using a classification
algorithm on only 20 features resulted in a mean detection accuracy
of more than 90% [11]. The benefit of machine learning techniques
is that they will not only detect known malware but will also serve
as knowledge for the detection of new malware. Machine learning
techniques are generally more computationally demanding than stan-
dard anti-malware, so they may not be suitable for end users. It can,
however, be implemented at the enterprise gateway level as a central
anti-malware engine to supplement anti-malware. Although infra-
structure is expensive, it can help protect valuable enterprise data from
security threats and prevent massive financial losses [10].

Normalization

Malware created by advanced toolkits like UPX and Mitsfall is dif-
ficult to detect. For the detection of such malware, normalization
techniques can be used to improve the detection rate of an existing
anti-malware program. In this technique, the normalizer accepts the
obfuscated version of the malware, removes the obfuscation from the
program, and generates the normalized executable. Following nor-
malization, the signature of the malware is extracted and compared
to the signature of the canonical form [11]. The malware normalizer
algorithm operates as shown in Figure 2. First, it decompresses the
malware PE binary code, then disassembles the compressed PE code,
and finally, the normalizer checks for and eliminates obfuscation per-
formed on the file, producing normalized code. After that, the mal-
ware detector will extract the created normalized code’s signature and
compare it to the signature stored in the signature database. The new

signature of malware in the canonical form is stored to avoid future
compromise [13]. Recently, a general malware normalizer with a de-
tection rate of up to 81% that can store a large number of obfuscation
methods in the form of automata structures was proposed [10].

Related Work

In recent years, the number of research projects on machine learn-
ing detection algorithms for detecting evasion-type malware has in-
creased rapidly. Vivekanand et al. [14] propose a model for detecting
polymorphic and metamorphic malware through a deeper examina-
tion of API calls, significant features, and their parameters that permit
polymorphism in malware to handle the detection and classification
challenges. Their work focuses on behavioural (dynamic) feature an-
alysis and APIs, and it also proposes a feature engineering approach
for the improved classification of malware families. For classification,
they used eight different malware family types. There were two mod-
ules created. The first module provides detection information about
submitted files to identify whether they are malicious or benign, while
the second module is used to classify identified malware according to
its family. A file is first submitted for dynamic analysis in the cuckoo
sandbox. It is a virtual environment for analysing malware. to extract
every call and parameter made using the accessible API (Application
Program Interface). According to how they work, APIs are divided
into seven categories: register, file, network, services, synchroniza-
tion, system, and process. Every sample of malware and benign file
has a unique collection of API traces that are saved in a dataset as
an API trace. After applying feature engineering to the dataset, two
datasets were created: one for malware classification and the other for
malware detection. Dataset 1 includes API calls as a feature and their
associated parameters for both malicious and benign samples. 9995
malicious and 9995 benign samples totalled 594 features employed to
detect malware. Dataset 2 includes eight different types of API calls
from malware. The malware families that were rated from 0 to 7 were
worms, trojans, advanced persistence threats (ATP), crypto-malware,
Zeus, downloaders, backdoors, and viruses. It has 1859 columns and
6396 rows. To establish which family of malware the given hash value
of the malware belongs to, they used the Virus Total service to pro-
duce this dataset. The top 30 features were employed in this model for
training and validation after feature engineering was applied to the
dataset, giving each feature a value to indicate its significance. These
features were noted by the Extra Trees Classifier. Eight families of mal-
ware were employed in dataset 2. They used SMOTE (Synthetic Min-
ority Oversampling Technique) to balance the malware class. These
malware families were labelled from 0 to 7. Because this dataset is un-
balanced, it will have an impact on the model’s accuracy and predict-
ability. To comprehend, explain, and justify the connections between
features and the anticipated class, they used Exploratory Data Analysis
(EDA) for quantitative analysis. They observed based on this link to
improve understanding of the issue and develop new solutions. Every
dataset contains features that are unrelated to one another, which can
affect the model’s accuracy. EDA is used in this model to remove this
kind of feature. The researchers focused on malware that runs on Win-
dows and utilized machine learning to examine its behaviour. From
the zoo, malware samples are downloaded. Malware samples contain
metamorphic and polymorphic. The virtual environment’s API and
parameters were all dynamically extracted. After applying feature
engineering to dataset 1, the model was trained on 80% of the data
with eight types of machine learning algorithms. Random Forest had
a higher accuracy of 98.74 percent, detecting malware in 2005 out of
2032 samples. Dataset 2 was used to classify malware that is meta-
morphic and polymorphic using a second model. It includes a few
families of malware that use evasion techniques for classification. 1859
features in total are present in dataset 2. Following feature engineering
and data balance with SMOTE, this model was trained and tested with
SVM, KNN, and RF. Random Forest provided the best performance,
with an accuracy of 96%. utilizing feature engineering and dynamic
feature analysis.

https://doi.org/10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 6

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Figure 2: Malware Normalization and signature comparison [11].

The main drawback of their work is that only dynamic analysis was
employed to detect malware for Windows 7 and that there were not
many samples of polymorphic and metamorphic malware used for
classification. If a PE file does not contact an API and instead accesses
an OS resource directly, then the proposed method is invalid. Future
advancements will include the use of a hybrid method for malware
detection. Researchers have found that API calls may effectively iden-
tify malware behaviour and can be used in conjunction with machine
learning algorithms to efficiently detect malware.

Namita et al [22] proposed a model to detect malware on the Win-
dows platform based on machine learning and API calls. Virus Share
data repository was used to retrieve malware samples, which totaled
2500 malicious samples and 2500 benign samples for Windows 10.
The cuckoo sandbox environment was used to execute these samples
and extract their behavioural reports. These reports comprise infor-
mation from performed samples in the form of API calls, such as net-
work communication, process, registry, and file system actions. API
calls provide a great representation of how a program behaves when
it is being executed. The data acquired from API calls are used to ex-
tract three different feature sets: API call usage, API call frequency,
and API call sequences. Usage, frequency, and sequences of API calls
are essential aspects in determining a sample’s behaviour. All of these
aspects were combined to create an API-integrated feature set, which
is a more useful feature set. TF-IDF assesses the relevance of each API
call feature included in the integrated API call feature set. A good clas-
sification model is built on robust and representative features. These
features offer critical information for building a powerful and effective
machine-learning model that can accurately identify malicious and
benign programs. It is important to eliminate features from the fea-
ture set that is unnecessary or irrelevant. to only display informational
features that will improve the detection method’s accuracy and extract
important features while reducing the feature dimension space. An
API-integrated feature set is utilized in conjunction with feature se-
lection techniques. Several feature selection techniques are categor-
ized into three groups: filter, wrapper, and hybrid methods. The sug-
gested malware detection model is developed using machine learning
algorithms including Decision Tree, SVM, Logistic Regression, and
k-Nearest Neighbour. Detection using Machine Learning Algorithms
and API Calls Usage Feature Set with DT, SVM, LR, and kNN algo-
rithms, it was found that the DT and KNN models performed well,
but the SVM and LR models performed poorly, with high false posi-
tives and false negatives. When using the API frequency feature set
rather than the API usage feature set, all machine learning algorithms

performed better. With this feature set, the SVM algorithm had a max-
imum accuracy of 98.8% with few false positives and negatives, which
had an impact on the method’s accuracy. Also, detection with API
call sequences showed that all algorithms achieved 96.5% accuracy or
higher with very low false positive and false negative rates.

The API call sequence feature set outperformed the API usage and
API frequency feature sets in terms of performance. Finally, the pro-
posed method detection performance with an integrated API feature
set is evaluated. The results show how well machine learning algo-
rithms with an integrated feature set from APIs perform classification.
It is clear from the data that, when using this feature set, all algorithms
achieved 99.6% accuracy. Furthermore, this feature set significantly
reduced the occurrence of false positives and negatives. Moreover, this
feature set beats other feature sets for API calls in terms of detection
performance. Due to its advantages over other feature sets, the API-in-
tegrated feature set has since been used for subsequent trials and re-
sults. This method’s ability to find malware can be improved by adding
more families of samples and their different versions.

Mohammad Ali et al [15] designed a classification system ap-
proach to identify malware based on N-grams and machine learn-
ing and developed an efficient feature extraction and representation
algorithm that may be used to enhance the approach. In this study,
they used a small, structured, and labelled dataset from Virus Hare
that had 60 harmless and 60 harmful samples of both polymorphic
and metamorphic malware. The proposed approach contains three
stages, monitoring, feature engineering, and learning and verification.
In the first stage, a data corpus was evaluated using an artificial in-
telligence-based sandbox (SANDBOX) to create behaviour reports
containing malicious file artifacts. The second stage which is the most
crucial step in designing an efficient malware detection approach
is feature engineering. The researchers proposed two scenarios for
N-gram feature creation and extraction: In scenario 1, the researchers
utilized API calls and the memory location of their arguments to con-
struct valid N-grams; in scenario 2, they used function calls and the
address of their arguments to construct N-grams.

The objective of using two different approaches setting to extract
N-gram features is to find out which way helps with accurate classifica-
tion. For both scenarios, API-N-grams with n = (1, 6) were produced
and then utilized to construct a feature vector. To minimize the fea-
ture space, they sorted each set of N-grams based on their frequency
of occurrence and eliminated the lowest-frequency grams. The Term
Frequency–Inverse Document Frequency (TF-IDF) algorithm was

https://doi.org/10.51626/ijeti.2025.06.00087

7

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

used to produce the effective feature set. It was used to calculate the
feature weighting and figure out which feature set was the most ac-
curate. In the last stage, N-gram feature sets were transformed into
binary vectors that would be utilized for training and testing by ma-
chine learning algorithms. In this context, four learning algorithms,
including logistic regression (LR), random forest (RF), decision tree
(DT), and Naive Bayes, were utilized to evaluate the performance of
the proposed system approach: logistic regression (LR), random forest
(RF), and decision tree (DT) (NB). In comparison to other learning
methods, logistic regression gave the highest classification accuracy,
98.43% for scenario 1 and 84.5% for scenario 2. The researchers in-
tended to do a future study on the effectiveness of N-gram analysis in
detecting malware. In addition, they intend to acquire enormous data-
bases pertaining to various types of malwares. In future research, they
intend to extend the number of features, including API calls, registry
values, DNS queries, HTTPS requests, and system modifications, to
train and evaluate them with deep learning algorithms.

Saima et al [16] proposed an effective malware detection technique
that uses features from the executable file’s PE header and Section
table to classify malware families. The PE file format is the primary
executable file format for Windows operating systems. The executable
files are disassembled using the IDA-Pro disassembler for debugging
and disassembling reasons. It is Microsoft-centric and includes DLLs.
Binary instructions are transformed into higher-level structures and
code mnemonics, from which desirable and significant features are
extracted. The proposed model was created using a static analysis ap-
proach. It detects malware before the executable file is executed. By
examining the extracted features of the executable file, malware is
analysed. Some research relies on prior information from the PE file
header for feature extraction. They took the PE file header as a whole
to analyse the characteristics of the executable files. Techniques like
n-datagram, grayscale, and many others are utilized for feature extrac-
tion. The classifier that assists in determining if the file is malicious or
not is built using these features. They extracted 1340 benign execut-
able (.exe and.dll) files from the System32 folders of Windows 7 and
Windows 8.1, as well as 1530 malicious executable files from the Virus
Share and VxHaven websites. The virus total online program was used
to scan executable samples for the presence of worms, viruses, Trojan
horses, and other malware. The IDA-Pro disassembler is used to dis-
assemble both malicious and benign samples to examine the function
of the portable executable files that have been disassembled. and gath-
ered a significant amount of data from the disassembled executable
file, storing different characteristics to comprehend the executable file.
The different classification methods of supervised machine learning
are utilized to look for patterns and their implications. on the data that
has already been assigned a class. classification techniques, including
k-Nearest Neighbours, Decision Trees, Random Forests, Naive Bays,
and Support Vector machines, are used. Based on the information
gathered, after comparing the combined feature set of a file header,
optional header, and section header to the feature set that only had
an optional header, they were able to get higher detection rates. Per-
formance of classification with optional header features Random For-
est and Decision Tree classifiers provide the highest accuracy results
when compared to other classifiers.

The Decision Tree classifier’s accuracy rate was 97.12%, whereas the
Random Forest classifier’s accuracy rate was 97.24%, which is slightly
higher. We obtained 97.5% precision, 97.9% recall, 97.50% true posi-
tive rate, and 3.07% false positive rate with the Random Forest classifi-
er. They merged features from all three headers to increase the accur-
acy of the results for more accurate malware detection. Classification
performance using combination features the best accuracy rate of all
the classifiers, 98.63%, was achieved by the Random Forest classifier.
We obtained a 98.68% true positive rate and a 1.42% false positive rate
with the Random Forest classifier. The scope of the proposed research
is the identification of malware in Windows executable files. Future
studies should strive to develop some strategies to extract those fea-

tures and extend the approach to include feature selection in more
hybrid scenarios. By addressing the problems with both methods of
analysis and creating a model based on hybrid analysis, which com-
bines static and dynamic analysis.

Aakash Wadhwani [17] conducted two kinds of experiments, the
first experiment was designed to reduce the accuracy of malware de-
tection by causing code metamorphosis. The second experiment fo-
cuses on improving the detection accuracy of the morphing algorithm,
which is the main objective of the experiment. In the first experiment,
Aakash Wadhwani introduced the theory of a metamorphic engine
that transforms JavaScript-based code into a different code form at the
Abstract Syntax Tree (ATS). The Abstract Syntax Tree is a hierarchical
structure of programming source code. It simplifies code and gives
important information about the instructions needed to change the
code. The techniques implemented in the morphing contain steps for
each source code; the first phase is to transfer code to AST, followed
by dead code insertion, instruction reordering, function reordering,
and instruction substitution, which change the signature of the ori-
ginal code without changing its functionality. After morphing ATS
back to its original code, the result of this would be a morphed code.
Then he used the following ML models for the classification, K Near-
est Neighbours, Random Forest, Support Vector Machine, and Naive
Bayes. The result of the experiment Then, he classified the dataset by
using the following ML models: K nearest neighbours, random forest,
support vector machine, and naive bayes. The outcome of the experi-
ment is a 21.95% decrease from 95.25 to 73.3 percentage. Maximum
accuracy decreases by 37.3% while utilizing K-Nearest Neighbour. In
the second experiment, he constructed a morphing code detection by
using N-gram and HMM features with several machine learning mod-
els including K Nearest Neighbour, SVM, Naive Bayes, and Random
Forest. With N-grams, SVM provides the highest detection accuracy
of 97%. In the experiment using HMM feature vectors, SVM performs
best with 96.8% accuracy, followed by KNN with 96.38% accuracy. His
future work is to experiment with Malware called GAN and try de-
tecting Transcriptase malware.

Sanjay et al [18] Introduced an approach based on the opcodes oc-
currence to enhance the detection capability and accuracy of undis-
covered sophisticated malware. The method includes the preparation
of a dataset, choosing promising features, training a classifier, and de-
tect advanced malware. first step, Kaggle Microsoft malware dataset
have been used in this study by downloaded and collected two type
of data benign and malware programs (7212 files) for the windows
platform. The datasets used in the method were filtered and cleaned
to remove noise, and then the data was prepared by computing the
weight of benign and malicious files based on the acceptable assembly
code weight, which should be equal to or less than 147.0 MB.

The obstacles posed by the growth dataset used in this study were
overcome through two methods: first, selection of instance, and
second, selection of feature. In their method, the number of instan-
ces (rows) in the dataset was reduced by selecting the most appropri-
ate rows and the most relevant attributes. Feature selection, is used
to choose the most relevant properties (features) in a dataset. These
two methods are particularly effective at reducing data because they
filtered and cleaned up data noisy. This means they take up less space,
take less time, and make classifiers work better. The next step is fea-
ture selection, which is the most critical and important step in ML
for maintaining accuracy. In this study, Fisher Score (FS) was used for
feature selection and later studied the following features: information
gain (IG), gain ratio (GR), chi-square (CS), and uncertainty symmetry
(US).

Based on these feature selection, the top 20 feature have been picked.
After the feature selection, the next step is to determine the accurate
classifier for the detection of sophisticated malware. They train 9 clas-
sifiers available in WEKA GUI on each feature selection (FS, IG, GR,
CS, and US) using the top 20 features to determine the most effective

https://doi.org/10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 8

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

classifier for detecting malware. RF, LMT, NBT, RT and J48 GRAFT
had the highest accuracy in detection. These five classifiers were
chosen for in-depth analysis. They have randomly selected 3005 mali-
cious and 2286 benign programs, representing 50 percent of the whole
dataset. Finally, they provided a technique based on the occurrence
of opcodes to enhance the detection rate of suspected sophisticated
malware. The proposed method applies the Fisher Score method for
feature selection and uses five classifiers to recognize unknown mal-
ware. Using the proposed method, LMT, RF, J48 Graft, and NBT can
all spot malware with 100% accuracy.

Based on the comparison in Table 1, the proposed solution will
detect metamorphic malware, which is considered the most sophis-
ticated malware and the most difficult to detect. Malware can spread
rapidly and mutate. It is affecting information integrity, confidential-
ity, and availability. The biggest issue with metamorphic malware is
that it uses several different techniques to evade detection and make
it more difficult to analyse and understand. The extracted feature in
previous related work and studies was based on static or dynamic an-
alysis. Also, it has limitations in the study of malware behaviour, and
some of them use small samples or old ones. In this work, we propose a
method for detecting metamorphic malware using an opcode and API
call features and analyse the detection accuracy result to understand
the feature impact on metamorphic malware detection. Then we apply
different machine learning algorithms and compare the performance
and accuracy of the models to get an effective solution for detecting
metamorphic malware. This paper aims to provide research answers
to the following questions:

a.What are the most effective machine learning methods for de-
tecting metamorphic malware, and which have the highest accuracy?

b.Does the feature affect and enhance the detection of metamorphic
malware?

c.What are the most significant features useful for detecting meta-
morphic malware?

Research Methodology
In this section, we describe our proposed method. The main goal

of this method is to find the most accurate model for detecting meta-
morphic malware from a set of files and to figure out what the most
important features are for detecting malware.

In order to accomplish that, we use two different machine learn-
ing technologies to evaluate the accuracy of detection. All machine
learning models were built based on a supervised approach that uses
a classification algorithm based on binary classification. The first tech-
nology is Weka machine learning software, and the second is Google
Collab to build machine learning models. The proposed method was
performed on two different metamorphic datasets, one based on an
opcode and the other on an API call. Operational Code (Opcode) A
compilation of machine-language instructions makes up an execut-
able program. These instructions consist of two parts: the operational
code and a list of operands. The part of the code known as Opcode
defines the operations, but the operatives, or the data to be processed,
may also contain additional information about the executable files.

The frequency of opcode occurrences is regarded as a remarkable
indicator for differentiating malicious files from benign ones. The first
dataset includes opcode as a feature and its parameters with respect to
malware and benign samples. The morphs created by a metamorphic
engine have certain characteristics in common. Application Program-
ming Interface (API) calls are one of the most reliable methods for de-
tecting evasive malware. It indicates the actual function of executable
files during runtime. Sequential analysis of these API calls also shows
how they relate to each other in terms of their context.

We used API call sequences as a feature in the second dataset. The
most relevant information about API call sequences is also provided
by the frequent patterns that are derived from them.

The experiment runs using two datasets, where the research runs in
four main steps:

i.sample collection,

ii.feature selection,

iii.splitting the dataset, and

iv.executable file classification, as shown in Figure 3.

Figure 3: Proposed methodology.

Sample Collection

Dataset 1 consists of five different classes of executable files taken
from GitHub [18]. First-class files are benign files with 4783 rows and
1808 columns that have been gathered from various versions of the
Microsoft Windows directory and programs in program files. The
second class consists of 100 virus samples produced using the “Next
Generation Virus Creation Kit.” One of the best-known tools for pro-
ducing metamorphic malware is NGVCK. The third class includes 100
virus samples generated by the “Phalcon-Skims Mass-Produced Code
Generator (PS-MPC).” The fourth class has 500 samples created by the

“Mass Code Generator (MPCGEN),” while the last class contains 63
examples of viruses created by the “Second Generation Virus Gener-
ator (G2).” All of the previous technologies give the code a toolbox
that enables it to alter its morphing with each execution by applying
obfuscation methods. It should be mentioned that during obfuscation,
their functions do not diminish. As a result, the new morphs perform
the same functions as previous generations but have a different signa-
ture. After that, the benign file was cleaned and normalized. Normal-
ization is a scaling method used to change the values in the numerical
columns of a dataset to a standard scale before machine learning. It

https://doi.org/10.51626/ijeti.2025.06.00087
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf

9

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

is only needed when the ranges of the features in machine learning
models are different. that led the data to be organized in a way that was
consistent across all records and fields. Moreover, it makes entry types
more cohesive, resulting in data cleaning, lead generation, segment-
ation, and an improvement in data quality. After data cleaning and
processing, the final dataset contains 1208 samples and 200 features.

The dataset 2 [21] file is taken from GitHub. These were collected by
monitoring the behaviours of the malware and retaining a record of
the system calls that each malware executes. The feature consists of the
frequency of a potential system call and the time-ordered list of system
calls collected from the log by performing the main activity of the mal-
ware using specific tools, 251 system calls were taken into account.

Our primary concern in this experiment is metamorphic malware.
It is difficult to gather enough samples and their mutations. Therefore,
we use a small dataset that includes mutants from Android malware.
This dataset consists of two files, each containing benign and mali-
cious samples that were collected from different sources. The first set
of data has 100 samples of malware and benign code from the web.
These samples come from Droid Kungfu, Doug Alek, and other mal-
ware families. The second malware sample is Evolved Malware (EM),
generated from the Malgenome Dump and Contagion Minidump
variations. This set of samples, which were created using quality-di-
versity MAP-Elites and classical Evolutionary Algorithm (EA) al-

gorithms, includes three families: Doug Alek, from GGtracker, and
Droid Kungfu, on the other hand, are The benign samples are collected
from the Google Play Store.

Feature Selection

Feature selection techniques are used to choose a subset of char-
acteristics so that an effective machine learning-based classification
model can be made that works well. The foundation of a successful
classification model is based on robust and representative features.
These features provide critical data for developing a machine-learning
model capable of distinguishing between malware and benign files.
Unfortunately, some features often add little or nothing to the detec-
tion process because they are redundant or have nothing to do with
the collection of features. Because of this, it is essential to eliminate
them and keep just informative features that will raise the detection
method’s accuracy. We gather massive amounts of data to train a mod-
el so that machine learning can get better. Most of the time, a lot of
the data we get is just random noise, and some of the columns in our
dataset may not have a big effect on how well our model works. In
addition, when there is a large amount of data available, training a
model may take longer. Moreover, the model might become erroneous
as a result of this useless input. Feature selection methods were gener-
ally classified as filter methods, wrapper methods, intrinsic methods,
and embedded methods, as shown in Figure 4.

Figure 4: Feature Selection Techniques.

In our proposed method, we use Weka software’s filter method and
information gain attribute to rank the most important features and
Google Collab to find the most important ones. After that, we reduce
the number of features and compare all the results to determine the
most significant features useful for metamorphic malware detection.

Splitting the Dataset

After the feature selection phase, we used the dataset that included
important features to divide it into two sets. For analysing the dataset,
we applied the cross-validation method of machine learning and split
it into a training set and a test set. Also, we applied for 80% training
and 20% testing. The training set makes up the greater portion of the
dataset (80%), while the test set makes up the smaller portion (20%).
The model is built on the training set and tested on the test set. Now
that it has been learned, the model can determine if the executable file
being used is malicious or not.

Executable File Classification

In the classification of executable files using data that already has
class labels, the various methods of supervised machine learning are
utilized to identify patterns and inferences. Using the gathered im-

portant features, classification techniques including Decision Tree,
Random Forest, k-Nearest Neighbours, Naïve Bays, Logistic Regres-
sion, Stochastic Gradient Descent, and Support Vector Machine are
used.

In this case, classification techniques are used to sort the data into
groups by training a model and feeding new data to the trained model
to make predictions. With the help of classifiers as a teacher or way to
learn, the model was able to teach itself how to find patterns and in-
ferences for prediction. After the model has been trained, it is checked
against testing data to find out how well the learning method that was
used to train the data worked. These classifiers are used to build vari-
ous models. The random forest classifier is used to build the most ef-
fective model. Because it consists of different decision trees that offer
the best classification results overall, random forest is regarded as the
best classifier. Decision trees, a single unit of the random forest, exe-
cute dataset splitting in a tree-like structure by running a feature test
at each node that optimizes a certain condition.

Analysis Dataset

The relationships between the features and the predicted data were
comprehended, defined, and explained through the examination of

https://doi.org/10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 10

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

datasets. Using this connection, we were able to draw conclusions and
learn more about the issue. Every dataset has features that have noth-
ing to do with each other, which can affect how accurate the model
is. After selecting the most important characteristic, we applied the
model for training and testing.

We split up the first dataset according to the number and importance
of features; thus, we used 12 sets with 200 features and reduced them
to 5 features. We do the same with the second dataset, but it consists
of two files: the first file is divided into three sets, starting with 250 fea-
tures and reducing to 20, and the second file is divided into three sets,
starting with 250 features and reducing to 31, to analyze and compare
the accuracy of detection based on the most important feature.

Experimentation And Evaluation
Experimentation and evaluation

In this section, we examine the results of the proposed approach, the
experimental setup, various metrics, and the accuracy of the detection
and classification of metamorphic malware.

a.The experiments have a dual focus:

b.The first section focuses on identifying the most effective and ac-
curate machine learning methods.

c.The second part concentrates on determining which features are
the most significant and useful for metamorphic malware detection.

Experiment Setup

 In this research, we focused on two different platforms Win-
dows-based and Android-based malware, and its detection using ma-
chine learning. Malware samples are downloaded from GitHub. The
malware sample contains metamorphic malware, and we use Win-
dows 10. We used machine learning toolkits, including the Weka GUI
software version v3.9.6, which is based on the Java programming lan-
guage, and Google Colab, a cloud development environment based on
Python. A Google Colab is used for training metamorphic malware
datasets and finding the important feature of the effective detection re-
sult. Weka machine learning software is used for training metamorph-
ic malware datasets and finding the ranking feature that affects the
detection result.

Evaluation
In our experiment, evaluation metrics are critical for both measuring

classification performance and directing classifier modelling. During
the evaluation step, we employ several metrics. They are as follows:

Accuracy: It measures the proportion of accurate predictions to all
input samples.

Precision: Is measured by dividing the number of correct positive
results by the total number of positive results that the classifier pre-
dicted.

Recall: It is determined by the total of all true positives divided by the
total of all actual positives.

F-score: It is a measure of precision and recall. If the F1-Score is 1, it
means the model is working perfectly.

True Positive Rate (TPR) is the rate of samples that contained mal-
ware and were correctly identified. The TPR is defined by dividing the
total number of malicious executable files.

False Positive Rate (FPR) is the rate of samples that were incorrectly
identified as containing malware and did contain malware. The FPR
is defined by dividing the total number of benign executable files.

True Negative Rate (TNR). The rate of samples that did not contain
malware and were not identified.

False Negative Rate (FNR). The rate of samples that contained mal-
ware that was not identified.

Result of 1st Experiment

The first experiment on the proposed method for Dataset 1 focus-
es on identifying the most effective and accurate machine-learning
methods that can determine whether an executable is malicious, meta-
morphic malware, or benign. We found Random Forest, J48 (Decision
Tree), and Naive Bayes Achieve the highest accurate machine learning
methods for both experiments in Weka and Google Colab with all fea-
tures, as shown in Figure 5.

In the second experiment, we determined which features are the
most significant and useful for malware detection, along with the im-
pact of accurate machine learning methods, and determined the high-
est one.

After using feature selection on dataset 1, training a model can take
longer when there is a lot of data available. Also, this unrelated fea-
ture could make the model faulty. Therefore, we reduce the number
of features using the filter method to rank features in Weka and select
important features that are related to each other in Google Collab to
get the best result.

Therefore, we used 12 datasets ranging from 200 features to 5 fea-
tures. Also, the model is trained in two different ways: first, we train
the model with 80% of the training data, and we use cross-validation
10 with 7 different machine learning algorithms such as Decision
Tree (DT, J48), Random Forest (RF), k-Nearest Neighbours (KNN),
Naive Bays (NB), Stochastic Gradient Descent (SGD), Support Vector
Machine (SVM), and Logistic Regression (LR). Random Forest gave
a higher accuracy of 100% for all datasets with different numbers of
features using different machine learning tools (Weka and Google
Collab), as we see in the table.

We achieved those detection rates with 200 features until 60 features
gave the same result, and from 40 features to 20 features, the detection
rate decreased a little, but with five features, it decreased even more.
We recommend using approximately 20–30 features related to each
other to get a good result while reducing time and resources.

The experiment on Google Collab using important feature selection
shows that the dataset contains 200 features, which were reduced to
60 features while maintaining the same detection accuracy. We train
80% and test the other 20%, as shown below: Random Forest, Logis-

https://doi.org/10.51626/ijeti.2025.06.00087

11

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

tic Regression, Decision Tree Classifier (J48), Naive Bayes, and Sto-
chastic Gradient Descent to achieve 100% of malware detection, In
addition, we measured precision, recall, f-measure, TPR, FPR, TNR,
and FNR as shown in Tables 2. We observe that while reducing the
feature based on important feature selection on Google Collab, the ac-
curacy of the machine learning method is affected directly, and once
it starts reducing the accuracy number as illustrated by the evaluation
matrix, the FP Rate starts increasing, which is the number of benign
executables misclassified as malware as shown in Tables 3 and 4 In the

case of 10- and 5-feature selection, the evaluation matrix shows how
the features play critical roles in reducing the accuracy of the machine
learning method, as shown in Tables 5 and 6.

Below are the experimental results for all 12 features of the dataset
by using ranking feature selection and all other methods using Weka
software. The first experiment used 80% training and 20% testing as
shown below in Table 7, and the second experiment used all 200 fea-
tures with 10% cross-validation as shown in (Figure 6-8) (Table 8).

Figure 5: All Feature.

Figure 6: Experimental Result using 80% training.

Figure 7: Experimental Result using cross-validation 10 training.

Figure 8: Experimental Results from Google Colab.

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

RF J48 KNN NB SGD SVM LR

All 200 Feature

Google Colab Weka

https://doi.org/10.51626/ijeti.2025.06.00087
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 12

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Result of 2nd Experiment

The first experiment on the proposed method for Dataset 2 based on
Android malware, which consists of two files, the first one collected
from the malware web and the second one generated evolved malware
from different algorithms, focuses on identifying the most effective
and accurate machine-learning methods that can determine whether
an executable is malicious metamorphic malware or benign.

After performing our proposed method on the first set of “Malware
Web”, we observed that the training model through cross-validation
decreased RF detection accuracy by -3% while LR increased accuracy
by +6%, as shown below in Tables 10 and 11. Detection accuracy for all
features using Cross validation 10 training in Weka software.

In a Google Collab experiment on malware web sets, we observed
detection accuracy with 250 features remaining the same as 36 fea-
tures after employing the Important Feature Method. We discovered

that Dataset 2 contains approximately 214 features that are useless for
detection and training models while consuming time and resources.
Random forest, decision tree, and naive bayes are the ones that have
gotten the best results in terms of accuracy. As shown below in Tables
12 and 13 (figure 9).

In the second experiment on the proposed method for dataset 2,
which is evolved mutants, we observed that Weka ML software gives
us high accuracy in most ML model detection of metamorphic mal-
ware from the malware web. In addition, cross-validation reduces the
detection accuracy in both data set files in dataset 2, as shown below
in Tables 14 and 15.

In a Google Collab experiment on evolved mutant sets, important
feature selection shows that the dataset contains 250 features, which
were reduced to 31 features while maintaining a similar detection
accuracy rate, except for NB, which was reduced to 95%. As shown
below in (Tables 16-18) (Figure 10)

Figure 9: Experimental Results for dataset2-file 1 from Google Colab.

Figure 10: Experimental Results for dataset2-file 2 from Google Colab.

Discussion
This subsection compares the detection rate accuracy of the pro-

posed metamorphic malware detection method with other research
presented in related work [14-18, 22]. Vivekanand et al. [14] presented
a model that achieved a detection accuracy rate of 98.74 percent with
Random Forest, and the classification model gave an accuracy of 96%
using the Random Forest classifier through API call features. Namita
et al. [22] presented a model that achieved a detection accuracy rate
of 99.9% with an API-integrated feature set using hybrid feature selec-
tion. Mohammad Ali et al. [15] proposed method achieved that NB
and LR gave the highest classification accuracy, 98.43% for scenario
1 and 84.5% for scenario 2, based on N-gram features. Saima et al.
[16] introduced a model based on static analysis that extracted the
features from the PE header of the executable file; when using only
the optional header, they achieved the highest accuracy of 97.24% to
classify malware with a random forest classifier. Additionally, the com-

bined extracted features from the file, optional, and section headers
were used to detect malware with a random forest classifier, which
achieved the greatest accuracy of 98.63%. Aakash Wadhwani [17] also
produces models based on static analysis using two features: N-grams
and HMM. The model achieves that, using N-gram features, the SVM
method gives the best accuracy, which is 97%; when using HMM fea-
ture vectors, SVM performs best with 96.8% accuracy, while KNN
ranks second with 96.38% accuracy. Sanjay et al. [18] introduced an
approach based on the frequency of opcode occurrence and used five
feature selection methods (FS, IG, GR, CS, and US) to select the top
20 features; therefore, they achieved that the Fisher score method is
the best among all and gets accuracy of 100 % in the cases of Random
Forest, LMT, NBT, and J48 Graft (Figure 11).

In our model, we focus on feature selection using the filter method
with the information gain attribute in Weka software and select im-
portant features in Google

https://doi.org/10.51626/ijeti.2025.06.00087
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf
https://skeenapublishers.com/journal/ijeti/IJETI-06-00087-Tables.pdf

13

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning

Figure 11: Comparing all accuracy with previous related work.

Conclusion And Future Work
The objective of this study was to identify the most effective and ac-

curate machine learning methods and determine which features have
an impact on metamorphic malware detection. We first introduced
metamorphic malware structure and behaviour, then demonstrated
obfuscation techniques. As we discussed in this work, there are differ-
ent approaches of malware analysis and methods to detect it.

The main part of this project was an experiment on detecting variant
metamorphic malware datasets on Windows and Android platforms.
We attempt to detect metamorphic malware by using machine learn-
ing techniques to develop models that are proficient in identifying
metamorphic malware and its future variations using seven different
methods of ML, compare the results, and identify which feature is im-
portant to detect and classify metamorphic malware.

We have shown experimentally that in the first dataset based on the
opcode feature, the decision trees and random Collab with two differ-
ent datasets. We also reduce the number of features and compare all
the results; therefore, we achieve that the detection accuracy rate in all
selection features achieves 100% with RF and DT, but when reducing
the number of important features, the accuracy decreases to 97.17%
with SGD when using Weka software, but when using Google Collab,
RF gives the highest accuracy with all the features and SVM gives the
lowest accuracy with 97.52% when reducing to 5 important features in
the first dataset based on the frequency of Opcode.

In the second dataset based on an API call as a feature, we have two
files, the first one collected from malware web and the second one
generated using two different algorithms. We achieve that the RF, DT,
and NB give the highest accuracy rate of 100%, while the SVM gives
the lowest accuracy rate of 70%, as shown in Table. forest classifiers
achieve a high accuracy rate with 100% detection for all datasets with
a diverse amount of features.

In addition, in the 2nd dataset that includes a time-ordered sequence
of the system calls as a feature, the result shows that random forest
gives the best detection rate. Finally, Our results show that the amount
of features plays a minor role in improving detection rates. While de-
tection depends mainly on the dominant features. Moreover, the large
number of features might consist of irrelevant features that affect de-
tection accuracy and consume a lot of resources.

In the future, it will be an interesting field of work to detect meta-
morphic malware by using a hybrid analysis approach to improve rec-
ognize the behaviours of metamorphic malware that uses obfuscated
techniques to evade detection and extracts hyper-features to improve
detection malware and its future mutation. We also propose to experi-
ment with mutation malware detection using a deep learning algo-
rithm.

References
1.	 Sk Sasidharan, C Thomas (2017) Short Review on Metamorphic Mal-

ware Detection in Hidden Markov Models. International Journal of
Advanced Research in Computer Science and Software Engineering
7(2).

2.	 P Ször, P Ferrie (2001) Hunting for metamorphic. Virus Bulletin Con-
ference.

3.	 S Ibrahim, M Masrom, BB Rad Camouflage (2012) In Malware: From
Encryption to Metamorphism. IJCSNS International Journal of Com-
puter Science and Network Security 12(8).

4.	 E Masabo, KS Kaawaase, JS Otim3, J Ngubiri, D Hanyurwimfura (2018)
A State of The Art Survey on Polymorphic Malware Analysis and De-
tection Techniques.

5.	 MZ Gashti (2017) Detection of Spam Email by Combining Harmony
Search Algorithm and Decision Tree Eng Technol Appl Sci Res 7(3):
1713-1718.

6.	 A Al-Marghilani (2021) Comprehensive Analysis of IoT Malware Eva-
sion Techniques. EngTechnol Appl Sci Res11(4): 7495-7500.

7.	 I You, K Yim (2017) Malware Obfuscation Techniques: A Brief Survey
International Conference on Broadband Wireless Computing, Com-
munication and Applications.

8.	 J M Borello, L Mé viruses (2008) Code obfuscation techniques for
metamorphic. Journal in Computer Virology.

9.	 X Li, P Loh Viruses, Mechanisms of Polymorphic and Metamorphic
(2011) European Intelligence and Security Informatics Conference.

10.	 FA Aboaoja, A Zainal, FA Ghaleb, BA Alrimy, TA Eisa, et.al. (2022)
Malware Detection Issues, Challenges and Future Directions:A Survey.
12(17).

11.	 A Sharma, S K Sahay (2014) Evolution and Detection of Polymorphic
and Metamorphic Malwares: A Survey. International Journal of Com-
puter Applications 90(2).

12.	 K Aldriwish (2021) A Deep Learning Approach for Malware and Soft-
ware Piracy Threat Detection. EngTechnol Appl Sci Res 11(6):7757–
7762.

13.	 Vinod P, V Laxmi, MS Gaur (2009) Survey on Malware Detection
Methods.

14.	 V Kuriyal, D Bordoloi, DP Singh, V Tripathi (2022) Metamorphic and
polymorphic malware detection and classification using dynamic an-
alysis of API calls. AIP Conference Proceedings 2481 (1).

15.	 M Ali, S Shiaeles, G Bendiab, B Ghita (2020) MALGRA: Machine
Learning and N-Gram Malware Feature Extraction and Detection Sys-
tem. 26(10).

16.	 S Naz, D K Singh (2019) Review of Machine Learning Methods for
Windows International Conference on Computing, Communication
and Networking Technologies (ICCCNT).

17.	 A Wadhwani (2019) JavaScript Metamorphic Malware Detection Using
Machine Learning Techniques. Master’s Projects 688.

18.	 AVatlas 2023.

19.	 S Sharma, R Krishna, S K Sanjay K Sahay (2019) Detection of Advanced

https://doi.org/10.51626/ijeti.2025.06.00087
https://www.researchgate.net/publication/228914374_Hunting_for_metamorphic
https://www.researchgate.net/publication/228914374_Hunting_for_metamorphic
https://www.researchgate.net/publication/235641122_Camouflage_In_Malware_From_Encryption_To_Metamorphism
https://www.researchgate.net/publication/235641122_Camouflage_In_Malware_From_Encryption_To_Metamorphism
https://www.researchgate.net/publication/235641122_Camouflage_In_Malware_From_Encryption_To_Metamorphism
https://etasr.com/index.php/ETASR/article/view/1171
https://etasr.com/index.php/ETASR/article/view/1171
https://etasr.com/index.php/ETASR/article/view/1171
https://pdfs.semanticscholar.org/8c45/e56b1fe6b3f61459ac784c2052bf4afcad4c.pdf
https://pdfs.semanticscholar.org/8c45/e56b1fe6b3f61459ac784c2052bf4afcad4c.pdf
https://www.profsandhu.com/cs5323_s18/yk_2010.pdf
https://www.profsandhu.com/cs5323_s18/yk_2010.pdf
https://www.profsandhu.com/cs5323_s18/yk_2010.pdf
https://ieeexplore.ieee.org/document/6061171
https://ieeexplore.ieee.org/document/6061171
https://www.mdpi.com/2076-3417/12/17/8482
https://www.mdpi.com/2076-3417/12/17/8482
https://www.mdpi.com/2076-3417/12/17/8482
https://arxiv.org/abs/1406.7061
https://arxiv.org/abs/1406.7061
https://arxiv.org/abs/1406.7061
https://www.mdpi.com/2079-9292/9/11/1777
https://www.mdpi.com/2079-9292/9/11/1777
https://www.mdpi.com/2079-9292/9/11/1777
https://ieeexplore.ieee.org/document/8944796
https://ieeexplore.ieee.org/document/8944796
https://ieeexplore.ieee.org/document/8944796
https://scholarworks.sjsu.edu/etd_projects/688/
https://scholarworks.sjsu.edu/etd_projects/688/
https://arxiv.org/abs/1903.02966

Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning 14

Citation: Dr. Asia Othman Aljahdali. Detection Of Metamorphic Malware Through Opcode and Api Call System Using Machine Learning. Int J Eng Tech & Inf. 2025;
6(1):1-14. DOI: 10.51626/ijeti.2025.06.00087

Malware by Machine Learning Techniques.

20.	 H Lakhotiya, A Sharma Metamorphic Malware Classification.

21.	 K Babagba.

22.	 N Dabas, P Ahlawat, P Sharma (2022) An Effective Malware Detec-

tion Method Using Hybrid Feature Selection and Machine Learning
Algorithms. Research Article-Computer Engineering and Computer
Science 17(2).

23.	 Feature Selection Techniques in Machine Learning.

https://doi.org/10.51626/ijeti.2025.06.00087
https://arxiv.org/abs/1903.02966
https://link.springer.com/article/10.1007/s10115-023-02010-5

	Abstract
	Keywords
	Introduction
	Background
	Research Methodology
	Evaluation
	Discussion
	References

