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Abstract
Malware is continually evolving, forcing security analysts and researchers to keep pace by improving their cyber defenses. The sophistication 

and diversity of malicious software presents significant challenges to protecting computer systems and networks against intrusion. The increase 
of malicious software has been amplified because of the adoption of obfuscation techniques, which are employed to elude detection and conceal 
its underlying purpose. Antivirus software uses different techniques that are insufficient for detecting metamorphic malware because they can 
change the internal structure of the code while keeping the same functionality. Most organizations completely rely on commercial antivirus soft-
ware that uses signature-based detection techniques to find any vulnerabilities. Code obfuscation techniques can successfully evade the previous 
technique. To overcome the previous limitations of traditional antivirus engines and keep up with new cyberattacks and variants of malware, 
researchers began adopting machine learning to enhance their approaches because machine learning is well suited for processing huge amounts 
of data. This paper presents a novel approach to detect metamorphic malware efficiently, we propose an efficient model for metamorphic mal-
ware detection by using seven different machine learning methods such as support vector machines, decision trees, random forests, naive bays, 
k-nearest neighbours, logistic regression, and stochastic gradient descent for the classification. We also propose a feature selection method to 
enhance the classification and detection of metamorphic malware, based on opcode and API call features, and analyse the detection accuracy 
result to understand the feature impact on metamorphic malware detection. Our model achieved a high accuracy rate for all datasets using 
decision trees and random forest classifiers. We also discovered that dominant features play a significant role in improving detection rates.
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Introduction 
The constant growth of digital transformation in all aspects of life 

has led to more potential security threats appearing daily, which can 
easily invade the privacy and integrity of data as well as affect or in-
terrupt system functionality and performance. Malware is one of the 
most significant and grave hazards to cybersecurity, governance, or-
ganizations, and individuals. It is composed of malicious software. 
Viruses, worms, Trojans, spyware, adware, ransomware, rootkits, key-
loggers, and other similar classifications are included [1]. since mal-
ware enters a system without the consent of the user and carries out 
undesirable acts that affect the security principles of confidentiality, 
availability, and integrity (CIA) and is designed to cause corruption 
to computer systems and compromise user security, such as stealing 

data from the host system and corrupting other executable files’ code, 
infecting system files, and writing large amounts of data to memory. 
Malware targets a variety of platforms, including servers, PCs, mobile 
phones, and smart devices. However, modern malware is also created 
for financial gain, to destroy a nation’s defenses systems, or to exert 
political influence. Malware can infect your computer in a variety of 
ways, including through the download of free or legitimate software 
from the internet that includes hidden malware, downloading email 
attachments containing malware, visiting an infected website, clicking 
off a fake error message that launches malware, etc. [2] The statistical 
analysis from AV-Test shows a huge growth in malware every day. In 
2022, 96,516.839 new malware pieces were created. 

Malware detection and classification have become crucial research 
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areas in cyber security because new malware generations have used 
obfuscation and evasion techniques to avoid detection and thus pro-
duce more sophisticated dynamic malware, such as metamorphic mal-
ware. [2] Metamorphic malware is capable of mutating itself with each 
infection into a new form to hide the malicious code without changing 
its functionality by using obfuscation techniques. Code obfuscation 
can be accomplished by dead-code insertion, register exchanging, in-
struction permutation and reordering, and instruction replacement. 
[3] We will discuss this obfuscation technique in Section III. A var-
iety of methodologies exist to detect malware, encompassing signa-
ture-based, behaviour-based, heuristic-based, normalization-based, 
and machine learning-based approaches. Signature-based detection 
is a prevalent method utilized by commercial products for malware 
detection. However, it lacks the capability to identify novel, uniden-
tified, and sophisticated malware, including metamorphic malware, 
which leads to zero-day attacks. Most organizations completely rely 
on commercial antivirus software that uses signature-based detection 
technology to find any vulnerabilities or intrusions. This weakens or-
ganizations’ defenses against metamorphic malware, which is a strong 
motivation for study and development into their detection [4].

Due to the increase in sophisticated malware and the legacy of sig-
nature-based detection, it is required to use an automated approach 
to reduce human involvement and enhance the accuracy of the detec-
tion method. We suggest machine learning (ML), which is commonly 
used to effectively classify and detect malware as well as spam mail [5]. 
Furthermore, it is very successful because it can deal with significant 
volumes of data, such as API calls, assembly code (Opcode), and byte 
code, which humans find unacceptable. Based on a variety of types of 
data that affect the overall detection and classification performance, 
ML approaches include support vector machines (SVM), naive bayes 
(NB), and decision trees (DT).

In this research, we aim to enhance and increase the accuracy of 
detecting metamorphic malware and future mutations. The primary 
concept is to utilize a machine learning model that uses a large dataset 
to ensure the accuracy rate of the selected methodology. The subse-
quent sections of the paper are structured in the following: Section 
II discusses the background concepts, and structure of metamorphic 
malware. Section III presents a metamorphic malware analysis. Sec-
tion IV discusses metamorphic malware detection techniques. Section 
V studies the related works. Section VI presents the research method-
ology (the machine learning model). Section VII presents the research 
experiments and evaluation. Section VIII covers the conclusion and 
recommendations for future work.

Background
Malware Overview

Malware is malicious software. It is like any other software applica-
tion but has malicious intentions. Malware comes in a variety of sim-
ple and complicated forms, including polymorphic and metamorphic 
malware. Malware can execute itself locally or be remotely managed 
through the Internet. Malware has a wide range of actions it can con-
duct to achieve its objectives. These actions could be described as the 
following: corrupt, access, or delete file activity, registry activity, run 
or modify undesirable service activity, mutex activity, process activity, 
runtime DLL activity, and network activity [4]. 

Malware can be classified into two distinct categories: first-gener-
ation and second-generation. In the first generation, the malware’s 
structure is unchanged, but in the second generation, each malware 
variation has a different internal structure while still performing the 
same behaviours. Second-generation malware is further divided into 
encrypted (packing), oligomorphic, polymorphic, and metamorphic 
malware based on how variations in malware are generated [1].

Metamorphic malware is the most challenging threat in the cyber 

security world; it is highly sophisticated and reduces the importance of 
signature-based detection. Metamorphic malware exhibits body-poly-
morphism, wherein it generates a new form while maintaining its ori-
ginal functionality, instead of generating a new Decryptor. Just like 
polymorphic malware, obfuscation techniques can be employed to 
generate new iterations. We discuss the details of metamorphic mal-
ware, obfuscation techniques, and how to detect this type of malware 
[1].

Metamorphic Malware Structure and Behaviour 

Metamorphic malware acts as though it automatically mutates itself 
each time it propagates or is distributed to a new host. It modifies its 
syntax or structure during each propagation to avoid signature-based 
detection while preserving its malicious functionality. Although 
its functionality is semantically identical, it modifies its code using 
semantics-preserving transformations to make one malware variant 
look very different from another. To prevent the same detection from 
being effective on all mutated variants, Metamorphic malware pos-
sesses an 80% morphing engine, which functions by taking the 20% 
malicious code as input and dynamically altering it during runtime to 
produce a syntactically distinct yet semantically comparable version 
[1]. 

Two copies of the same malware can be significantly different from 
each other by repeatedly obfuscating, and most detection techniques 
are unable to fully recognize metamorphic malware. Obfuscation tech-
niques such as dead code insertion, register substitution, instruction 
replacement, instruction permutation, and code reordering/transpos-
ition. In 2000, the Win32/Ghost virus was created with 362,880 differ-
ent variants [1]. One of the strongest metamorphic malwares, W32/
NGVCK, was created in 2001 with the help of the Next Generation 
Virus Creation Kit (NGVCK) [2].

The components of a metamorphic engine are a disassembler, a 
code analyser, a code transformer, and an assembler. When the virus 
finds the location of its code, it requires converting the code into as-
sembly instructions, which is handled by an internal disassembler. 
The code analyser is responsible for providing essential information 
for the code transformer module. The code transformer needs some 
essential information, such as the structure and flow diagram of the 
program, subroutines, duration of variables and registers, and so on. 
This information helps the code transformer work appropriately. The 
code transformer, or obfuscator, is the brain of the mutation engine. 
It is responsible for obfuscating the code and modifying the binary 
sequence of the virus. The other modules are designed to provide the 
requirements of the obfuscation module. It may use several obfusca-
tion techniques and finally convert the newly produced mutated as-
sembly code of the virus into machine binary code by the last module, 
Assembler [2]. Metamorphic malware cannot be detected with signa-
ture-based detection because professional metamorphic malware can 
create an infinite number of variants that behave similarly and do not 
have a single pattern used to detect them. Therefore, to detect power-
ful metamorphic infections, antivirus scanning engines must adopt 
highly developed heuristics and behaviour-based detection methods 
[3] (Figure 1).

Obfuscation Techniques

The obfuscation technique makes malware difficult to detect. It 
changes a malicious code to a new different version while preserving 
the same functionality. The primary purpose of this technique was to 
protect the intellectual property of software developers. Later, mal-
ware developers exploited this technique to hamper detection and 
analysis, Polymorphic and metamorphic malware use this technique. 
Metamorphic malware uses several different techniques to evade de-
tection and make it more difficult to be analysed and understand [22], 
it changes its codes into new generations but keeps the same malicious 
functionality [4].
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Figure 1: Assembly of replicator and mutation engine in Metamorphic virus [3].

Obfuscation adds unnecessary instructions or garbage/dead to an 
existing code to change the structure while keeping the same behav-
iour [7]. The binary sequence of a malicious code is changed without 
affecting the original functionality. Obfuscation techniques will be 
discussed below in detail [8]:

Dead Code Insertion/ Garbage code insertion

The insertion of dead code or garbage code is the simplest way to 
modify the binary sequence of the virus program without affecting the 
functionality or behaviour of the code but confusing and overloading 
the emulator during code analysis [9], such as instruction NOP does 
not have any functionality, the instructions do not alter the content 
of CPU registers or memory There are several types of dead codes. 

Register Swapping/ Register Exchanging

The virus instruction operands are saved in various registers in this 
method for each new infection, it replaces another unused register for 
the use of a register in an instruction. It implies switching registers or 
memory variables of various malware variants and changing the bi-
nary sequence of the code, this does not affect a program’s behaviour, 
but it evades signature-based detection [7].

Instruction Replacement/Substitution

In this obfuscating technique, instruction is replaced with equivalent 
instruction by keeping the same functionality but changing the code 
with a library of equivalent instructions. The branch conditions can 
be reversed, register moves can be replaced by push/pop sequences, 
alternate opcode encoding, and xor/sub and or/test interchanging are 
examples of instructions that can be substituted. 

Instruction Permutation/Reordering

In this method reorder the sequence of instructions, without 
changing the result. Through this rearranging process, binary sequen-
ces of the code look different in various generations [4].

Code reordering

This method restructures the sequences of binary code. It accom-
plishes this by employing sophisticated transfer of control or jump 
instructions as the foundation for obfuscation, while preserving func-
tionality and restoring the original program execution flow via uncon-
ditional or conditional branches. The reordering may be executed at 
the level of individual instructions or entire blocks of code. [3] [7].

Metamorphic Malware Analysis

The impact of malware analysis and the nature of the data involved 
have become increasingly influential in the process of detection. This 
impact extends to the classification of files during investigations, thus 
affecting the overall accuracy of detection models. Malware analysis is 

an important process of malware detection to understand the malware 
structure, its main characteristics, and functionality, Different essential 
elements are discovered during analysis and reveal information about 
malware functionality. Before developing effective detection systems, 
and must be performed analysis malware first [2]. There are three pri-
mary methods of analysis: static, dynamic, and hybrid. Various forms 
of data have been retrieved through the utilization of static, dynam-
ic, and hybrid analysis techniques. These include Byte code, Opcode, 
API calls, file data, registry data, and other relevant data sources. The 
objective of this analysis is to gain a comprehensive understanding of 
the files under examination and afterwards classify them as either mal-
ware or benign files based on their primary function [10].

Static Analysis 

Static analysis is the process that malicious files can be identified 
without actually executing on the device. Because malware is not run, 
static analysis is safer than dynamic analysis. It is divided into two 
categories, including basic static analysis and advanced static analy-
sis. Basic static analysis reveals the malicious program’s version, file 
format, and any suspicious imports, in addition to other basic infor-
mation. Basic static analysis is quick and easy, but ineffective since it 
can lose important information. Advanced static analysis deals with 
structure analysis, which requires an understanding of operating sys-
tem principles, assembly language, and compiler code. Examining the 
malware’s internal code allows it to analyse the functionality of the 
malware. Through this analysis, information can be obtained about 
the identification of malware, passwords, libraries, URLs, and pro-
gramming languages. Mutants and function routines can be found. 
The code may be disassembled and decompiled using advanced static 
analysis. Static analysis, however, is unable to deal with packing and 
obfuscation. Although it indicates packing, the binary must be un-
packed for static analysis to be successful [8].

When conducting static analysis on binary executables or source 
code, a wide range of static data can be gathered. This includes data 
from the portable executable header (PE-header) as well as derived 
data such as string-based entropy and compression ratio. Further-
more, researchers have the option to utilize other tools, like the IDA 
Pro disassembler and Python-based modules, for the purpose of gath-
ering static opcode and API call data. Despite the ability of static an-
alysis to trace all potential execution pathways, it is susceptible to the 
influence of packing and encryption methodologies [4]. There are two 
main advantages of static analysis. First, since malware doesn’t need to 
be executed during analysis, it is safe. Second, it gives more detailed 
information about malware’s execution paths.

Dynamic Analysis 

Dynamic analysis is s carried out in a virtual environment to prevent 
the malware from actually infecting computer systems. Dynamic an-
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alysis involves running a malicious program and observing its runtime 
characteristics before analysing it. Malicious behaviours are observed 
and recorded. The malware unpacks itself during this time, and modi-
fications it makes to the system are also observable. the basic dynamic 
analysis is observing the basic behaviours that malware executes, such 
as the creation of new processes, file activities, or registry activities 
[2].

On the other hand, advanced dynamic analysis thoroughly exam-
ines the internal state of a malicious program that is now executing. 
It performs a thorough internal inspection to get more detailed infor-
mation on the malicious behaviours and employs advanced debugging 
techniques to single-step through the infected code. Any hidden code 
obtained by packing is disclosed during runtime code analysis. A mal-
ware’s identity is dynamically determined. Function calls, parameter 
analysis, and information flow are all depicted. The activities of files, 
processes and dynamic link libraries (DLL) are disclosed. The dynam-
ic analysis aids in the detection of packing and obfuscation properties 
as well as metamorphic mutations. It is possible to perform memory 
analysis. Examined is how malware interacts with the file system, pro-
cesses, and network [4]. A variety of data can be gathered through the 
implementation of a dynamic analysis methodology. Malicious activ-
ities can be depicted through the analysis of executable file behaviour 
and the preservation of memory images during runtime. The identifi-
cation of executable file behaviours involves the collection of executed 
API calls, machine actions, file-related data, as well as registry and net-
work data. Opcode-based memory pictures have the potential to serve 
as dynamic representations of harmful operations. When dynamically 
conducted, the analysis of obfuscated malware reveals its activities, 
although dynamic analysis fails to meet all harmful circumstances ne-
cessary for detecting all execution routes [10]. 

There is a list of tools for dynamically analysing malware and per-
forming advanced and specific monitoring of some functionalities 
including, Process Monitor, Process Explorer, Regshot, NetCat, 
Wireshark, OllyDbg, etc [9]. Advantages of dynamic analysis include 
handling packed files, analysing massive malware corpora auto-
matically, and investigating real-time malware behaviour. The dis-
advantages of dynamic analysis include, it costs a lot to compute and 
uses a lot of system resources, the potential for missing out on some 
execution paths when malware under monitoring goes dormant, the 
risk of a network-capable malware infecting the host system from the 
virtual environment, and the difficulty of monitoring malware that can 
refuse to execute when run in a virtual environment [1].

Hyper Analysis

When malware has more complex code, basic static analysis is ineffi-
cient, and complex malware can occasionally evade detection by sand-
box technology. The best of both methods can be achieved by combin-
ing the two different malware analysis methodologies. In addition to 
extracting many more features from statically generated and previous-
ly unobserved code, hybrid analysis can find hidden malicious code. It 
can identify unknown threats, including those coming from the most 
advanced malware.Data extracted using static and dynamic analysis 
were combined to minimize the limitations of each analysis method 
and increase detection rates. Different tools, including Cuckoo Sand-
box, IDA Pro Disassembler, and Olley’d, are used to gather dynamic 
and static data, and then hybrid feature sets are built based on several 
types of data, such as strings, opcodes, API calls, and others [10].

Metamorphic Malware Detection Techniques

Advanced malware developers deploy a variety of obfuscation strat-
egies and techniques to avoid detection. As previously mentioned in 
this paper, code packing, polymorphism, and metamorphism are the 
most commonly used obfuscation techniques. The process of detecting 
malware is the mechanism that needs to be implemented to uncover 
and identify the malicious activities of the files under investigation. As 
a result, many malware detection methods are improving year after 

year without a unique approach, which does not provide 100% success 
with all types of malware and families in all situations. Malware, par-
ticularly metamorphic malware, is notoriously difficult to detect. By 
constantly mutating its internal structure while remaining inside an 
infected system, it poses an interesting threat. As a consequence, the 
malware was discovered utilizing four malware detection techniques 
based on signatures, behaviours, heuristics, and newly developed ma-
chine learning, which were based on the two primary characteristics of 
malware: signatures and behaviours. Therefore, developing a reliable 
method for detecting metamorphic malware is essential. The methods 
for malware detection are discussed in the sections that follow [1].

Signature-based detection

Signature detection is the most common technique in virus protec-
tion software. Signature detection is based on unique signature pattern 
matching, in which a sequence of bits against malware is stored in a 
malware database, signatures pattern stored in the database has to be 
previously extracted to compare the given testing files’ signatures, to 
an updated database of signatures and make a final decision based on 
the matching state. When an anti-virus scans the system, it looks for 
programs with signatures in the malware database. If a file is matched 
with the files in the malware database, it is marked as malware, too, and 
thus used later for malware signature matching. This approach cannot 
detect malicious files for which no signatures have been recorded yet. 
It is not capable of detecting zero-day attacks and sophisticated mal-
ware like metamorphic and is readily overcome by straightforward 
code obfuscation techniques. Because of their low false positive rate 
and low processing cost, the majority of antivirus programs employ 
this strategy [8]. The advantages of using signature-based detection 
are speed and accuracy. Along with this, the disadvantage of using sig-
nature detection is Any new malware would never be detected by these 
static detectors. Thus, the malware database needs to be constantly 
updated. Even a small obfuscation will cause this detection technique 
to break. Thus, dynamic analysis is required for the virus’s dynamic 
behaviours [1].

Anomaly-based detection 

This detection approach is based on monitoring and analysing be-
haviours during the runtime of malware in a controlled environment 
(a virtual machine or sandbox), then determining if the given file is 
following normal behaviour or not [10]. It overcomes the limits of sig-
nature-based detection by using heuristic approaches to detect nor-
mal behaviour. After monitoring the executable files in an isolated en-
vironment and collecting the observed behaviours, features extraction 
techniques were developed to extract the sensitive features that will 
allow the developed model to classify the known malicious behaviours 
as well as any behaviour that appears to be similar to them in terms 
of false positive behaviours. The ability to identify novel malware be-
haviours in addition to known ones using run-time behaviour collec-
tion has made this approach more valuable than signature-based ap-
proaches.  As a result, the majority of the studies in the review focused 
on using behavioural-based approaches to increase malware detection 
ratios in the form of continuous, sequential, and common behaviours. 
Any file that does not classify as normal is then classified as malicious 
software. The definition of anomalous and normal is defined by the 
user, so the classification is not very accurate. A malware detector has 
been developed for classifying input files based on file structure. A test 
file requiring classification is provided for detector input. The file is 
classified as abnormal if it appears to be, otherwise, it is marked as be-
nign. After classification, it is examined to determine whether it was a 
malicious malware file or simply a false positive. Detecting an anomaly 
can have a large number of false positives or false negatives. Therefore, 
anomaly detection is used with signature detection to provide greater 
accuracy [1].

Heuristic-based detection 

This method has been used in many studies to support the model-
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ling of identifying and detecting malicious malware through the es-
tablishment of generic rules that use extracted data that is provided by 
dynamic or static analysis as rule input. There is no single type of data 
that is commonly used with this approach, but the researchers have 
mostly used all types of data at the same rate, including API calls, net-
work data, registry data, imported DLL, and others. In addition, the 
creation of generic rules plays a major role in the final discussion of 
malware detection and classification [11]. A heuristic-based approach 
has two approaches to detecting malicious software. Firstly, in the stat-
ic approach, a suspicious program is disassembled to find a match with 
the known malware pattern, if any. If the result of the scan exceeds the 
preset threshold, then the program is labelled as infected. Secondly, in 
the dynamic approach, code emulation techniques are used by simu-
lating the processor and operating system to detect suspicious oper-
ations (an attempt to open other executable files to modify its con-
tent, changing the Master Boot Record, concealing themselves from 
the operating system, etc.) on a virtual machine. The resulting rules of 
the two approaches can be created manually according to the exper-
tise and experience of professional analysts or by automatically using 
machine learning techniques, the YARA tool, and other technologies 
based on expert knowledge of analysis. Several studies have been done 
to develop malware detection models by which decisions have been 
taken based on the automated behavioural rules that are created using 
machine learning techniques and the YARA tool. On the other hand, 
based on statically extracted string data [10].

Machine learning detection 

Malware detection using machine learning techniques has grown 
in popularity in recent years and is commonly used for the detection 
and classification of malware as in [12]. This method is very successful 
because it can deal with massive amounts of data, such as Application 
Programming Interface (API) calls, assembly code (Opcode), and byte 
code, which is unacceptable for humans. ML techniques provide a 
high degree of generality, have become an active domain in the field of 
cybersecurity, and have an impact on high detection and classification 
accuracy. Naive Bayes, decision trees, data mining, neural networks, 
vector machines, and hidden Markov models are popular machine 
learning techniques among researchers for detecting 2nd generation 
malware. This technique is not intended to replace standard detection 
methods but rather to supplement them [10] Robert Moskov itch et al. 
proposed malware detection based on computer behaviour monitor-
ing (features). His evaluation results show that using a classification 
algorithm on only 20 features resulted in a mean detection accuracy 
of more than 90% [11]. The benefit of machine learning techniques 
is that they will not only detect known malware but will also serve 
as knowledge for the detection of new malware. Machine learning 
techniques are generally more computationally demanding than stan-
dard anti-malware, so they may not be suitable for end users. It can, 
however, be implemented at the enterprise gateway level as a central 
anti-malware engine to supplement anti-malware. Although infra-
structure is expensive, it can help protect valuable enterprise data from 
security threats and prevent massive financial losses [10].

Normalization

Malware created by advanced toolkits like UPX and Mitsfall is dif-
ficult to detect. For the detection of such malware, normalization 
techniques can be used to improve the detection rate of an existing 
anti-malware program. In this technique, the normalizer accepts the 
obfuscated version of the malware, removes the obfuscation from the 
program, and generates the normalized executable. Following nor-
malization, the signature of the malware is extracted and compared 
to the signature of the canonical form [11]. The malware normalizer 
algorithm operates as shown in Figure 2. First, it decompresses the 
malware PE binary code, then disassembles the compressed PE code, 
and finally, the normalizer checks for and eliminates obfuscation per-
formed on the file, producing normalized code. After that, the mal-
ware detector will extract the created normalized code’s signature and 
compare it to the signature stored in the signature database. The new 

signature of malware in the canonical form is stored to avoid future 
compromise [13]. Recently, a general malware normalizer with a de-
tection rate of up to 81% that can store a large number of obfuscation 
methods in the form of automata structures was proposed [10].

Related Work

In recent years, the number of research projects on machine learn-
ing detection algorithms for detecting evasion-type malware has in-
creased rapidly. Vivekanand et al. [14] propose a model for detecting 
polymorphic and metamorphic malware through a deeper examina-
tion of API calls, significant features, and their parameters that permit 
polymorphism in malware to handle the detection and classification 
challenges. Their work focuses on behavioural (dynamic) feature an-
alysis and APIs, and it also proposes a feature engineering approach 
for the improved classification of malware families. For classification, 
they used eight different malware family types. There were two mod-
ules created. The first module provides detection information about 
submitted files to identify whether they are malicious or benign, while 
the second module is used to classify identified malware according to 
its family. A file is first submitted for dynamic analysis in the cuckoo 
sandbox. It is a virtual environment for analysing malware. to extract 
every call and parameter made using the accessible API (Application 
Program Interface). According to how they work, APIs are divided 
into seven categories: register, file, network, services, synchroniza-
tion, system, and process. Every sample of malware and benign file 
has a unique collection of API traces that are saved in a dataset as 
an API trace. After applying feature engineering to the dataset, two 
datasets were created: one for malware classification and the other for 
malware detection. Dataset 1 includes API calls as a feature and their 
associated parameters for both malicious and benign samples. 9995 
malicious and 9995 benign samples totalled 594 features employed to 
detect malware. Dataset 2 includes eight different types of API calls 
from malware. The malware families that were rated from 0 to 7 were 
worms, trojans, advanced persistence threats (ATP), crypto-malware, 
Zeus, downloaders, backdoors, and viruses. It has 1859 columns and 
6396 rows. To establish which family of malware the given hash value 
of the malware belongs to, they used the Virus Total service to pro-
duce this dataset. The top 30 features were employed in this model for 
training and validation after feature engineering was applied to the 
dataset, giving each feature a value to indicate its significance. These 
features were noted by the Extra Trees Classifier. Eight families of mal-
ware were employed in dataset 2. They used SMOTE (Synthetic Min-
ority Oversampling Technique) to balance the malware class. These 
malware families were labelled from 0 to 7. Because this dataset is un-
balanced, it will have an impact on the model’s accuracy and predict-
ability. To comprehend, explain, and justify the connections between 
features and the anticipated class, they used Exploratory Data Analysis 
(EDA) for quantitative analysis. They observed based on this link to 
improve understanding of the issue and develop new solutions. Every 
dataset contains features that are unrelated to one another, which can 
affect the model’s accuracy. EDA is used in this model to remove this 
kind of feature. The researchers focused on malware that runs on Win-
dows and utilized machine learning to examine its behaviour. From 
the zoo, malware samples are downloaded. Malware samples contain 
metamorphic and polymorphic. The virtual environment’s API and 
parameters were all dynamically extracted. After applying feature 
engineering to dataset 1, the model was trained on 80% of the data 
with eight types of machine learning algorithms. Random Forest had 
a higher accuracy of 98.74 percent, detecting malware in 2005 out of 
2032 samples. Dataset 2 was used to classify malware that is meta-
morphic and polymorphic using a second model. It includes a few 
families of malware that use evasion techniques for classification. 1859 
features in total are present in dataset 2. Following feature engineering 
and data balance with SMOTE, this model was trained and tested with 
SVM, KNN, and RF. Random Forest provided the best performance, 
with an accuracy of 96%. utilizing feature engineering and dynamic 
feature analysis.
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Figure 2: Malware Normalization and signature comparison [11].

The main drawback of their work is that only dynamic analysis was 
employed to detect malware for Windows 7 and that there were not 
many samples of polymorphic and metamorphic malware used for 
classification. If a PE file does not contact an API and instead accesses 
an OS resource directly, then the proposed method is invalid. Future 
advancements will include the use of a hybrid method for malware 
detection. Researchers have found that API calls may effectively iden-
tify malware behaviour and can be used in conjunction with machine 
learning algorithms to efficiently detect malware. 

Namita et al [22] proposed a model to detect malware on the Win-
dows platform based on machine learning and API calls. Virus Share 
data repository was used to retrieve malware samples, which totaled 
2500 malicious samples and 2500 benign samples for Windows 10. 
The cuckoo sandbox environment was used to execute these samples 
and extract their behavioural reports. These reports comprise infor-
mation from performed samples in the form of API calls, such as net-
work communication, process, registry, and file system actions. API 
calls provide a great representation of how a program behaves when 
it is being executed. The data acquired from API calls are used to ex-
tract three different feature sets: API call usage, API call frequency, 
and API call sequences. Usage, frequency, and sequences of API calls 
are essential aspects in determining a sample’s behaviour. All of these 
aspects were combined to create an API-integrated feature set, which 
is a more useful feature set. TF-IDF assesses the relevance of each API 
call feature included in the integrated API call feature set. A good clas-
sification model is built on robust and representative features. These 
features offer critical information for building a powerful and effective 
machine-learning model that can accurately identify malicious and 
benign programs. It is important to eliminate features from the fea-
ture set that is unnecessary or irrelevant. to only display informational 
features that will improve the detection method’s accuracy and extract 
important features while reducing the feature dimension space. An 
API-integrated feature set is utilized in conjunction with feature se-
lection techniques. Several feature selection techniques are categor-
ized into three groups: filter, wrapper, and hybrid methods. The sug-
gested malware detection model is developed using machine learning 
algorithms including Decision Tree, SVM, Logistic Regression, and 
k-Nearest Neighbour. Detection using Machine Learning Algorithms 
and API Calls Usage Feature Set with DT, SVM, LR, and kNN algo-
rithms, it was found that the DT and KNN models performed well, 
but the SVM and LR models performed poorly, with high false posi-
tives and false negatives. When using the API frequency feature set 
rather than the API usage feature set, all machine learning algorithms 

performed better. With this feature set, the SVM algorithm had a max-
imum accuracy of 98.8% with few false positives and negatives, which 
had an impact on the method’s accuracy. Also, detection with API 
call sequences showed that all algorithms achieved 96.5% accuracy or 
higher with very low false positive and false negative rates. 

The API call sequence feature set outperformed the API usage and 
API frequency feature sets in terms of performance. Finally, the pro-
posed method detection performance with an integrated API feature 
set is evaluated. The results show how well machine learning algo-
rithms with an integrated feature set from APIs perform classification. 
It is clear from the data that, when using this feature set, all algorithms 
achieved 99.6% accuracy. Furthermore, this feature set significantly 
reduced the occurrence of false positives and negatives. Moreover, this 
feature set beats other feature sets for API calls in terms of detection 
performance. Due to its advantages over other feature sets, the API-in-
tegrated feature set has since been used for subsequent trials and re-
sults. This method’s ability to find malware can be improved by adding 
more families of samples and their different versions.

Mohammad Ali et al [15] designed a classification system ap-
proach to identify malware based on N-grams and machine learn-
ing and developed an efficient feature extraction and representation 
algorithm that may be used to enhance the approach. In this study, 
they used a small, structured, and labelled dataset from Virus Hare 
that had 60 harmless and 60 harmful samples of both polymorphic 
and metamorphic malware.  The proposed approach contains three 
stages, monitoring, feature engineering, and learning and verification. 
In the first stage, a data corpus was evaluated using an artificial in-
telligence-based sandbox (SANDBOX) to create behaviour reports 
containing malicious file artifacts. The second stage which is the most 
crucial step in designing an efficient malware detection approach 
is feature engineering. The researchers proposed two scenarios for 
N-gram feature creation and extraction: In scenario 1, the researchers 
utilized API calls and the memory location of their arguments to con-
struct valid N-grams; in scenario 2, they used function calls and the 
address of their arguments to construct N-grams.

The objective of using two different approaches setting to extract 
N-gram features is to find out which way helps with accurate classifica-
tion. For both scenarios, API-N-grams with n = (1, 6) were produced 
and then utilized to construct a feature vector. To minimize the fea-
ture space, they sorted each set of N-grams based on their frequency 
of occurrence and eliminated the lowest-frequency grams. The Term 
Frequency–Inverse Document Frequency (TF-IDF) algorithm was 
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used to produce the effective feature set. It was used to calculate the 
feature weighting and figure out which feature set was the most ac-
curate. In the last stage, N-gram feature sets were transformed into 
binary vectors that would be utilized for training and testing by ma-
chine learning algorithms. In this context, four learning algorithms, 
including logistic regression (LR), random forest (RF), decision tree 
(DT), and Naive Bayes, were utilized to evaluate the performance of 
the proposed system approach: logistic regression (LR), random forest 
(RF), and decision tree (DT) (NB). In comparison to other learning 
methods, logistic regression gave the highest classification accuracy, 
98.43% for scenario 1 and 84.5% for scenario 2. The researchers in-
tended to do a future study on the effectiveness of N-gram analysis in 
detecting malware. In addition, they intend to acquire enormous data-
bases pertaining to various types of malwares. In future research, they 
intend to extend the number of features, including API calls, registry 
values, DNS queries, HTTPS requests, and system modifications, to 
train and evaluate them with deep learning algorithms.

Saima et al [16] proposed an effective malware detection technique 
that uses features from the executable file’s PE header and Section 
table to classify malware families. The PE file format is the primary 
executable file format for Windows operating systems. The executable 
files are disassembled using the IDA-Pro disassembler for debugging 
and disassembling reasons. It is Microsoft-centric and includes DLLs. 
Binary instructions are transformed into higher-level structures and 
code mnemonics, from which desirable and significant features are 
extracted. The proposed model was created using a static analysis ap-
proach. It detects malware before the executable file is executed. By 
examining the extracted features of the executable file, malware is 
analysed. Some research relies on prior information from the PE file 
header for feature extraction. They took the PE file header as a whole 
to analyse the characteristics of the executable files. Techniques like 
n-datagram, grayscale, and many others are utilized for feature extrac-
tion. The classifier that assists in determining if the file is malicious or 
not is built using these features. They extracted 1340 benign execut-
able (.exe and.dll) files from the System32 folders of Windows 7 and 
Windows 8.1, as well as 1530 malicious executable files from the Virus 
Share and VxHaven websites. The virus total online program was used 
to scan executable samples for the presence of worms, viruses, Trojan 
horses, and other malware. The IDA-Pro disassembler is used to dis-
assemble both malicious and benign samples to examine the function 
of the portable executable files that have been disassembled. and gath-
ered a significant amount of data from the disassembled executable 
file, storing different characteristics to comprehend the executable file. 
The different classification methods of supervised machine learning 
are utilized to look for patterns and their implications. on the data that 
has already been assigned a class. classification techniques, including 
k-Nearest Neighbours, Decision Trees, Random Forests, Naive Bays, 
and Support Vector machines, are used. Based on the information 
gathered, after comparing the combined feature set of a file header, 
optional header, and section header to the feature set that only had 
an optional header, they were able to get higher detection rates. Per-
formance of classification with optional header features Random For-
est and Decision Tree classifiers provide the highest accuracy results 
when compared to other classifiers. 

The Decision Tree classifier’s accuracy rate was 97.12%, whereas the 
Random Forest classifier’s accuracy rate was 97.24%, which is slightly 
higher. We obtained 97.5% precision, 97.9% recall, 97.50% true posi-
tive rate, and 3.07% false positive rate with the Random Forest classifi-
er. They merged features from all three headers to increase the accur-
acy of the results for more accurate malware detection. Classification 
performance using combination features the best accuracy rate of all 
the classifiers, 98.63%, was achieved by the Random Forest classifier. 
We obtained a 98.68% true positive rate and a 1.42% false positive rate 
with the Random Forest classifier. The scope of the proposed research 
is the identification of malware in Windows executable files. Future 
studies should strive to develop some strategies to extract those fea-

tures and extend the approach to include feature selection in more 
hybrid scenarios. By addressing the problems with both methods of 
analysis and creating a model based on hybrid analysis, which com-
bines static and dynamic analysis. 

Aakash Wadhwani [17] conducted two kinds of experiments, the 
first experiment was designed to reduce the accuracy of malware de-
tection by causing code metamorphosis. The second experiment fo-
cuses on improving the detection accuracy of the morphing algorithm, 
which is the main objective of the experiment. In the first experiment, 
Aakash Wadhwani introduced the theory of a metamorphic engine 
that transforms JavaScript-based code into a different code form at the 
Abstract Syntax Tree (ATS). The Abstract Syntax Tree is a hierarchical 
structure of programming source code. It simplifies code and gives 
important information about the instructions needed to change the 
code. The techniques implemented in the morphing contain steps for 
each source code; the first phase is to transfer code to AST, followed 
by dead code insertion, instruction reordering, function reordering, 
and instruction substitution, which change the signature of the ori-
ginal code without changing its functionality. After morphing ATS 
back to its original code, the result of this would be a morphed code. 
Then he used the following ML models for the classification, K Near-
est Neighbours, Random Forest, Support Vector Machine, and Naive 
Bayes. The result of the experiment Then, he classified the dataset by 
using the following ML models: K nearest neighbours, random forest, 
support vector machine, and naive bayes. The outcome of the experi-
ment is a 21.95% decrease from 95.25 to 73.3 percentage. Maximum 
accuracy decreases by 37.3% while utilizing K-Nearest Neighbour. In 
the second experiment, he constructed a morphing code detection by 
using N-gram and HMM features with several machine learning mod-
els including K Nearest Neighbour, SVM, Naive Bayes, and Random 
Forest. With N-grams, SVM provides the highest detection accuracy 
of 97%. In the experiment using HMM feature vectors, SVM performs 
best with 96.8% accuracy, followed by KNN with 96.38% accuracy. His 
future work is to experiment with Malware called GAN and try de-
tecting Transcriptase malware.

Sanjay et al [18] Introduced an approach based on the opcodes oc-
currence to enhance the detection capability and accuracy of undis-
covered sophisticated malware. The method includes the preparation 
of a dataset, choosing promising features, training a classifier, and de-
tect advanced malware. first step, Kaggle Microsoft malware dataset 
have been used in this study by downloaded and collected two type 
of data benign and malware programs (7212 files) for the windows 
platform. The datasets used in the method were filtered and cleaned 
to remove noise, and then the data was prepared by computing the 
weight of benign and malicious files based on the acceptable assembly 
code weight, which should be equal to or less than 147.0 MB.  

The obstacles posed by the growth dataset used in this study were 
overcome through two methods: first, selection of instance, and 
second, selection of feature. In their method, the number of instan-
ces (rows) in the dataset was reduced by selecting the most appropri-
ate rows and the most relevant attributes. Feature selection, is used 
to choose the most relevant properties (features) in a dataset. These 
two methods are particularly effective at reducing data because they 
filtered and cleaned up data noisy. This means they take up less space, 
take less time, and make classifiers work better.  The next step is fea-
ture selection, which is the most critical and important step in ML 
for maintaining accuracy. In this study, Fisher Score (FS) was used for 
feature selection and later studied the following features: information 
gain (IG), gain ratio (GR), chi-square (CS), and uncertainty symmetry 
(US). 

Based on these feature selection, the top 20 feature have been picked. 
After the feature selection, the next step is to determine the accurate 
classifier for the detection of sophisticated malware. They train 9 clas-
sifiers available in WEKA GUI on each feature selection (FS, IG, GR, 
CS, and US) using the top 20 features to determine the most effective 
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classifier for detecting malware. RF, LMT, NBT, RT and J48 GRAFT 
had the highest accuracy in detection. These five classifiers were 
chosen for in-depth analysis. They have randomly selected 3005 mali-
cious and 2286 benign programs, representing 50 percent of the whole 
dataset. Finally, they provided a technique based on the occurrence 
of opcodes to enhance the detection rate of suspected sophisticated 
malware. The proposed method applies the Fisher Score method for 
feature selection and uses five classifiers to recognize unknown mal-
ware. Using the proposed method, LMT, RF, J48 Graft, and NBT can 
all spot malware with 100% accuracy.

Based on the comparison in Table 1, the proposed solution will 
detect metamorphic malware, which is considered the most sophis-
ticated malware and the most difficult to detect. Malware can spread 
rapidly and mutate. It is affecting information integrity, confidential-
ity, and availability. The biggest issue with metamorphic malware is 
that it uses several different techniques to evade detection and make 
it more difficult to analyse and understand. The extracted feature in 
previous related work and studies was based on static or dynamic an-
alysis. Also, it has limitations in the study of malware behaviour, and 
some of them use small samples or old ones. In this work, we propose a 
method for detecting metamorphic malware using an opcode and API 
call features and analyse the detection accuracy result to understand 
the feature impact on metamorphic malware detection. Then we apply 
different machine learning algorithms and compare the performance 
and accuracy of the models to get an effective solution for detecting 
metamorphic malware. This paper aims to provide research answers 
to the following questions:

a.What are the most effective machine learning methods for de-
tecting metamorphic malware, and which have the highest accuracy?

b.Does the feature affect and enhance the detection of metamorphic 
malware?

c.What are the most significant features useful for detecting meta-
morphic malware? 

Research Methodology
In this section, we describe our proposed method. The main goal 

of this method is to find the most accurate model for detecting meta-
morphic malware from a set of files and to figure out what the most 
important features are for detecting malware.

In order to accomplish that, we use two different machine learn-
ing technologies to evaluate the accuracy of detection. All machine 
learning models were built based on a supervised approach that uses 
a classification algorithm based on binary classification. The first tech-
nology is Weka machine learning software, and the second is Google 
Collab to build machine learning models. The proposed method was 
performed on two different metamorphic datasets, one based on an 
opcode and the other on an API call. Operational Code (Opcode) A 
compilation of machine-language instructions makes up an execut-
able program. These instructions consist of two parts: the operational 
code and a list of operands. The part of the code known as Opcode 
defines the operations, but the operatives, or the data to be processed, 
may also contain additional information about the executable files.

The frequency of opcode occurrences is regarded as a remarkable 
indicator for differentiating malicious files from benign ones. The first 
dataset includes opcode as a feature and its parameters with respect to 
malware and benign samples. The morphs created by a metamorphic 
engine have certain characteristics in common. Application Program-
ming Interface (API) calls are one of the most reliable methods for de-
tecting evasive malware. It indicates the actual function of executable 
files during runtime. Sequential analysis of these API calls also shows 
how they relate to each other in terms of their context. 

We used API call sequences as a feature in the second dataset. The 
most relevant information about API call sequences is also provided 
by the frequent patterns that are derived from them.

The experiment runs using two datasets, where the research runs in 
four main steps: 

i.sample collection, 

ii.feature selection, 

iii.splitting the dataset, and 

iv.executable file classification, as shown in Figure 3.

Figure 3: Proposed methodology.

Sample Collection

Dataset 1 consists of five different classes of executable files taken 
from GitHub [18]. First-class files are benign files with 4783 rows and 
1808 columns that have been gathered from various versions of the 
Microsoft Windows directory and programs in program files. The 
second class consists of 100 virus samples produced using the “Next 
Generation Virus Creation Kit.” One of the best-known tools for pro-
ducing metamorphic malware is NGVCK. The third class includes 100 
virus samples generated by the “Phalcon-Skims Mass-Produced Code 
Generator (PS-MPC).” The fourth class has 500 samples created by the 

“Mass Code Generator (MPCGEN),” while the last class contains 63 
examples of viruses created by the “Second Generation Virus Gener-
ator (G2).” All of the previous technologies give the code a toolbox 
that enables it to alter its morphing with each execution by applying 
obfuscation methods. It should be mentioned that during obfuscation, 
their functions do not diminish. As a result, the new morphs perform 
the same functions as previous generations but have a different signa-
ture. After that, the benign file was cleaned and normalized. Normal-
ization is a scaling method used to change the values in the numerical 
columns of a dataset to a standard scale before machine learning. It 
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is only needed when the ranges of the features in machine learning 
models are different. that led the data to be organized in a way that was 
consistent across all records and fields. Moreover, it makes entry types 
more cohesive, resulting in data cleaning, lead generation, segment-
ation, and an improvement in data quality. After data cleaning and 
processing, the final dataset contains 1208 samples and 200 features.

The dataset 2 [21] file is taken from GitHub. These were collected by 
monitoring the behaviours of the malware and retaining a record of 
the system calls that each malware executes. The feature consists of the 
frequency of a potential system call and the time-ordered list of system 
calls collected from the log by performing the main activity of the mal-
ware using specific tools, 251 system calls were taken into account.

Our primary concern in this experiment is metamorphic malware. 
It is difficult to gather enough samples and their mutations. Therefore, 
we use a small dataset that includes mutants from Android malware. 
This dataset consists of two files, each containing benign and mali-
cious samples that were collected from different sources. The first set 
of data has 100 samples of malware and benign code from the web. 
These samples come from Droid Kungfu, Doug Alek, and other mal-
ware families. The second malware sample is Evolved Malware (EM), 
generated from the Malgenome Dump and Contagion Minidump 
variations. This set of samples, which were created using quality-di-
versity MAP-Elites and classical Evolutionary Algorithm (EA) al-

gorithms, includes three families: Doug Alek, from GGtracker, and 
Droid Kungfu, on the other hand, are The benign samples are collected 
from the Google Play Store.

Feature Selection 

Feature selection techniques are used to choose a subset of char-
acteristics so that an effective machine learning-based classification 
model can be made that works well. The foundation of a successful 
classification model is based on robust and representative features. 
These features provide critical data for developing a machine-learning 
model capable of distinguishing between malware and benign files. 
Unfortunately, some features often add little or nothing to the detec-
tion process because they are redundant or have nothing to do with 
the collection of features. Because of this, it is essential to eliminate 
them and keep just informative features that will raise the detection 
method’s accuracy. We gather massive amounts of data to train a mod-
el so that machine learning can get better. Most of the time, a lot of 
the data we get is just random noise, and some of the columns in our 
dataset may not have a big effect on how well our model works. In 
addition, when there is a large amount of data available, training a 
model may take longer. Moreover, the model might become erroneous 
as a result of this useless input. Feature selection methods were gener-
ally classified as filter methods, wrapper methods, intrinsic methods, 
and embedded methods, as shown in Figure 4. 

Figure 4: Feature Selection Techniques.

In our proposed method, we use Weka software’s filter method and 
information gain attribute to rank the most important features and 
Google Collab to find the most important ones. After that, we reduce 
the number of features and compare all the results to determine the 
most significant features useful for metamorphic malware detection.

Splitting the Dataset

After the feature selection phase, we used the dataset that included 
important features to divide it into two sets. For analysing the dataset, 
we applied the cross-validation method of machine learning and split 
it into a training set and a test set. Also, we applied for 80% training 
and 20% testing. The training set makes up the greater portion of the 
dataset (80%), while the test set makes up the smaller portion (20%). 
The model is built on the training set and tested on the test set. Now 
that it has been learned, the model can determine if the executable file 
being used is malicious or not. 

Executable File Classification

In the classification of executable files using data that already has 
class labels, the various methods of supervised machine learning are 
utilized to identify patterns and inferences. Using the gathered im-

portant features, classification techniques including Decision Tree, 
Random Forest, k-Nearest Neighbours, Naïve Bays, Logistic Regres-
sion, Stochastic Gradient Descent, and Support Vector Machine are 
used.

In this case, classification techniques are used to sort the data into 
groups by training a model and feeding new data to the trained model 
to make predictions. With the help of classifiers as a teacher or way to 
learn, the model was able to teach itself how to find patterns and in-
ferences for prediction. After the model has been trained, it is checked 
against testing data to find out how well the learning method that was 
used to train the data worked. These classifiers are used to build vari-
ous models. The random forest classifier is used to build the most ef-
fective model. Because it consists of different decision trees that offer 
the best classification results overall, random forest is regarded as the 
best classifier. Decision trees, a single unit of the random forest, exe-
cute dataset splitting in a tree-like structure by running a feature test 
at each node that optimizes a certain condition.

Analysis Dataset

The relationships between the features and the predicted data were 
comprehended, defined, and explained through the examination of 
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datasets. Using this connection, we were able to draw conclusions and 
learn more about the issue. Every dataset has features that have noth-
ing to do with each other, which can affect how accurate the model 
is. After selecting the most important characteristic, we applied the 
model for training and testing.

We split up the first dataset according to the number and importance 
of features; thus, we used 12 sets with 200 features and reduced them 
to 5 features. We do the same with the second dataset, but it consists 
of two files: the first file is divided into three sets, starting with 250 fea-
tures and reducing to 20, and the second file is divided into three sets, 
starting with 250 features and reducing to 31, to analyze and compare 
the accuracy of detection based on the most important feature.

Experimentation And Evaluation
Experimentation and evaluation

In this section, we examine the results of the proposed approach, the 
experimental setup, various metrics, and the accuracy of the detection 
and classification of metamorphic malware.

a.The experiments have a dual focus:

b.The first section focuses on identifying the most effective and ac-
curate machine learning methods.

c.The second part concentrates on determining which features are 
the most significant and useful for metamorphic malware detection.

Experiment Setup

 In this research, we focused on two different platforms Win-
dows-based and Android-based malware, and its detection using ma-
chine learning. Malware samples are downloaded from GitHub. The 
malware sample contains metamorphic malware, and we use Win-
dows 10. We used machine learning toolkits, including the Weka GUI 
software version v3.9.6, which is based on the Java programming lan-
guage, and Google Colab, a cloud development environment based on 
Python. A Google Colab is used for training metamorphic malware 
datasets and finding the important feature of the effective detection re-
sult. Weka machine learning software is used for training metamorph-
ic malware datasets and finding the ranking feature that affects the 
detection result.

Evaluation
In our experiment, evaluation metrics are critical for both measuring 

classification performance and directing classifier modelling. During 
the evaluation step, we employ several metrics. They are as follows:

Accuracy: It measures the proportion of accurate predictions to all 
input samples.

Precision: Is measured by dividing the number of correct positive 
results by the total number of positive results that the classifier pre-
dicted.

Recall: It is determined by the total of all true positives divided by the 
total of all actual positives.

F-score: It is a measure of precision and recall. If the F1-Score is 1, it 
means the model is working perfectly.

True Positive Rate (TPR) is the rate of samples that contained mal-
ware and were correctly identified. The TPR is defined by dividing the 
total number of malicious executable files.

False Positive Rate (FPR) is the rate of samples that were incorrectly 
identified as containing malware and did contain malware. The FPR 
is defined by dividing the total number of benign executable files.

True Negative Rate (TNR). The rate of samples that did not contain 
malware and were not identified.

False Negative Rate (FNR). The rate of samples that contained mal-
ware that was not identified.

Result of 1st Experiment

The first experiment on the proposed method for Dataset 1 focus-
es on identifying the most effective and accurate machine-learning 
methods that can determine whether an executable is malicious, meta-
morphic malware, or benign. We found Random Forest, J48 (Decision 
Tree), and Naive Bayes Achieve the highest accurate machine learning 
methods for both experiments in Weka and Google Colab with all fea-
tures, as shown in Figure 5.

In the second experiment, we determined which features are the 
most significant and useful for malware detection, along with the im-
pact of accurate machine learning methods, and determined the high-
est one.

After using feature selection on dataset 1, training a model can take 
longer when there is a lot of data available. Also, this unrelated fea-
ture could make the model faulty. Therefore, we reduce the number 
of features using the filter method to rank features in Weka and select 
important features that are related to each other in Google Collab to 
get the best result.

Therefore, we used 12 datasets ranging from 200 features to 5 fea-
tures. Also, the model is trained in two different ways: first, we train 
the model with 80% of the training data, and we use cross-validation 
10 with 7 different machine learning algorithms such as Decision 
Tree (DT, J48), Random Forest (RF), k-Nearest Neighbours (KNN), 
Naive Bays (NB), Stochastic Gradient Descent (SGD), Support Vector 
Machine (SVM), and Logistic Regression (LR). Random Forest gave 
a higher accuracy of 100% for all datasets with different numbers of 
features using different machine learning tools (Weka and Google 
Collab), as we see in the table.

We achieved those detection rates with 200 features until 60 features 
gave the same result, and from 40 features to 20 features, the detection 
rate decreased a little, but with five features, it decreased even more. 
We recommend using approximately 20–30 features related to each 
other to get a good result while reducing time and resources.

The experiment on Google Collab using important feature selection 
shows that the dataset contains 200 features, which were reduced to 
60 features while maintaining the same detection accuracy. We train 
80% and test the other 20%, as shown below: Random Forest, Logis-
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tic Regression, Decision Tree Classifier (J48), Naive Bayes, and Sto-
chastic Gradient Descent to achieve 100% of malware detection, In 
addition, we measured precision, recall, f-measure, TPR, FPR, TNR, 
and FNR as shown in Tables 2. We observe that while reducing the 
feature based on important feature selection on Google Collab, the ac-
curacy of the machine learning method is affected directly, and once 
it starts reducing the accuracy number as illustrated by the evaluation 
matrix, the FP Rate starts increasing, which is the number of benign 
executables misclassified as malware as shown in Tables 3 and 4 In the 

case of 10- and 5-feature selection, the evaluation matrix shows how 
the features play critical roles in reducing the accuracy of the machine 
learning method, as shown in Tables 5 and 6.

Below are the experimental results for all 12 features of the dataset 
by using ranking feature selection and all other methods using Weka 
software. The first experiment used 80% training and 20% testing as 
shown below in Table 7, and the second experiment used all 200 fea-
tures with 10% cross-validation as shown in (Figure 6-8) (Table 8).

Figure 5: All Feature.

Figure 6: Experimental Result using 80% training.

Figure 7: Experimental Result using cross-validation 10 training.                                                                  

Figure 8: Experimental Results from Google Colab.
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Result of 2nd Experiment

The first experiment on the proposed method for Dataset 2 based on 
Android malware, which consists of two files, the first one collected 
from the malware web and the second one generated evolved malware 
from different algorithms, focuses on identifying the most effective 
and accurate machine-learning methods that can determine whether 
an executable is malicious metamorphic malware or benign.

After performing our proposed method on the first set of “Malware 
Web”, we observed that the training model through cross-validation 
decreased RF detection accuracy by -3% while LR increased accuracy 
by +6%, as shown below in Tables 10 and 11. Detection accuracy for all 
features using Cross validation 10 training in Weka software.

In a Google Collab experiment on malware web sets, we observed 
detection accuracy with 250 features remaining the same as 36 fea-
tures after employing the Important Feature Method. We discovered 

that Dataset 2 contains approximately 214 features that are useless for 
detection and training models while consuming time and resources. 
Random forest, decision tree, and naive bayes are the ones that have 
gotten the best results in terms of accuracy. As shown below in Tables 
12 and 13 (figure 9).

In the second experiment on the proposed method for dataset 2, 
which is evolved mutants, we observed that Weka ML software gives 
us high accuracy in most ML model detection of metamorphic mal-
ware from the malware web. In addition, cross-validation reduces the 
detection accuracy in both data set files in dataset 2, as shown below 
in Tables 14 and 15.

In a Google Collab experiment on evolved mutant sets, important 
feature selection shows that the dataset contains 250 features, which 
were reduced to 31 features while maintaining a similar detection 
accuracy rate, except for NB, which was reduced to 95%. As shown 
below in (Tables 16-18) (Figure 10)

Figure 9: Experimental Results for dataset2-file 1 from Google Colab.

Figure 10: Experimental Results for dataset2-file 2 from Google Colab.

Discussion
This subsection compares the detection rate accuracy of the pro-

posed metamorphic malware detection method with other research 
presented in related work [14-18, 22]. Vivekanand et al. [14] presented 
a model that achieved a detection accuracy rate of 98.74 percent with 
Random Forest, and the classification model gave an accuracy of 96% 
using the Random Forest classifier through API call features. Namita 
et al. [22] presented a model that achieved a detection accuracy rate 
of 99.9% with an API-integrated feature set using hybrid feature selec-
tion. Mohammad Ali et al. [15] proposed method achieved that NB 
and LR gave the highest classification accuracy, 98.43% for scenario 
1 and 84.5% for scenario 2, based on N-gram features. Saima et al. 
[16] introduced a model based on static analysis that extracted the 
features from the PE header of the executable file; when using only 
the optional header, they achieved the highest accuracy of 97.24% to 
classify malware with a random forest classifier. Additionally, the com-

bined extracted features from the file, optional, and section headers 
were used to detect malware with a random forest classifier, which 
achieved the greatest accuracy of 98.63%. Aakash Wadhwani [17] also 
produces models based on static analysis using two features: N-grams 
and HMM. The model achieves that, using N-gram features, the SVM 
method gives the best accuracy, which is 97%; when using HMM fea-
ture vectors, SVM performs best with 96.8% accuracy, while KNN 
ranks second with 96.38% accuracy. Sanjay et al. [18] introduced an 
approach based on the frequency of opcode occurrence and used five 
feature selection methods (FS, IG, GR, CS, and US) to select the top 
20 features; therefore, they achieved that the Fisher score method is 
the best among all and gets accuracy of 100 % in the cases of Random 
Forest, LMT, NBT, and J48 Graft (Figure 11).

In our model, we focus on feature selection using the filter method 
with the information gain attribute in Weka software and select im-
portant features in Google 
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Figure 11: Comparing all accuracy with previous related work.

Conclusion And Future Work 
The objective of this study was to identify the most effective and ac-

curate machine learning methods and determine which features have 
an impact on metamorphic malware detection. We first introduced 
metamorphic malware structure and behaviour, then demonstrated 
obfuscation techniques. As we discussed in this work, there are differ-
ent approaches of malware analysis and methods to detect it.

The main part of this project was an experiment on detecting variant 
metamorphic malware datasets on Windows and Android platforms. 
We attempt to detect metamorphic malware by using machine learn-
ing techniques to develop models that are proficient in identifying 
metamorphic malware and its future variations using seven different 
methods of ML, compare the results, and identify which feature is im-
portant to detect and classify metamorphic malware.

We have shown experimentally that in the first dataset based on the 
opcode feature, the decision trees and random Collab with two differ-
ent datasets. We also reduce the number of features and compare all 
the results; therefore, we achieve that the detection accuracy rate in all 
selection features achieves 100% with RF and DT, but when reducing 
the number of important features, the accuracy decreases to 97.17% 
with SGD when using Weka software, but when using Google Collab, 
RF gives the highest accuracy with all the features and SVM gives the 
lowest accuracy with 97.52% when reducing to 5 important features in 
the first dataset based on the frequency of Opcode.

In the second dataset based on an API call as a feature, we have two 
files, the first one collected from malware web and the second one 
generated using two different algorithms. We achieve that the RF, DT, 
and NB give the highest accuracy rate of 100%, while the SVM gives 
the lowest accuracy rate of 70%, as shown in Table. forest classifiers 
achieve a high accuracy rate with 100% detection for all datasets with 
a diverse amount of features.

In addition, in the 2nd dataset that includes a time-ordered sequence 
of the system calls as a feature, the result shows that random forest 
gives the best detection rate. Finally, Our results show that the amount 
of features plays a minor role in improving detection rates. While de-
tection depends mainly on the dominant features. Moreover, the large 
number of features might consist of irrelevant features that affect de-
tection accuracy and consume a lot of resources.

In the future, it will be an interesting field of work to detect meta-
morphic malware by using a hybrid analysis approach to improve rec-
ognize the behaviours of metamorphic malware that uses obfuscated 
techniques to evade detection and extracts hyper-features to improve 
detection malware and its future mutation. We also propose to experi-
ment with mutation malware detection using a deep learning algo-
rithm.
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