
International Journal on Engineering Technologies and Informatics

Volume 5 Issue 2- 2024

Research Article

Author Details

Yongchang Wang*, Hongqiang Hu, Xuning Liu

Shijiazhuang University, China

*Corresponding author
Yongchang Wang, Shijiazhuang University, China

Article History
Received: March 18, 2024 Accepted: March 21, 2024 Published: March 25, 2024

A Distributed Feature Extraction Method Based
on MapReduce

Abstract
 For data with complex dimensions, Kernel Principal Component Analysis (KPCA) is a common method of feature extraction, it has a better

generalization performance. However, it often face with significant difficulties in computation on large datasets. Therefore, we developed a
parallel KPCA algorithm based on MapReduce (MRKPCA) in this paper, it’s a parallel computing method which can run in a cluster. We apply
our algorithm to an experiment of datasets of face recognition, the experimental results show that our algorithm can scale well and has better
timeliness for some specific problems which require a lot of computation, and it can significantly reduce computation time.

Keywords: Dimension Reduction, Feature Extraction, KPCA, MapReduce

Introduction
In recent years, automatic face recognition has become a hot topic in

the field of pattern recognition and image processing, researchers have
proposed many methods for face recognition. The technology use
camera to collect the image or video stream, and the image is detected
and tracked automatically [1]. How to extract the feature of face image
effectively is the key problem in the process of automatic face recog-
nition. In the process of face recognition, the methods of extracting
features include principal component analysis (PCA), kernel principal
component analysis (KPCA), independent component analysis (ICA),
linear discriminant analysis (LDA),...,etc. All these methods of feature
extraction belong to the fields of dimension reduction [2].

Dimension reduction is a key step of feature extraction. Among
the methods of dimension reduction, PCA is interesting because it
serves as a foundation for many algorithms. However, PCA is a linear
method, so many nonlinear PCA algorithms have been developed
for overcoming this problem. Kernel PCA may be the most popular
nonlinear method based on PCA by using a kernel function. With the
arrival of the era of big data, the dimension of big data are higher and
more complicated, the large volume of datasets makes computation by
KPCA on very large scale datasets a challenging task. MapReduce is
the most used model for big data processing and distributed comput-
ing. A large number of matrix calculations in KPCA can be paralleled
by MapReduce, so we developed a distributed KPCA algorithm based
on MapReduce to improve the efficiency of feature extraction on big
data.

The Principle of PCA
The calculation process of PCA is as follows:

Let’s define the variable X=[x1,x2,…,xN], where X is a matrix of d -by-
N and the dimension of each sample in X is d. For dimension reduc-
tion, we should use the data with k dimension to represent the original
data of d dimension (k<d).When we use centered data (which means
∑i xi=0), we can define a covariance matrix of C as:

For calculating the eigenvalue of C, we can get

 Where U=[u1,u2,..,ud], Ʌ= diag (λ1,λ2,…,λd) and we should note that
C, U, Ʌ are matrix of d -by- N.

 For dimension reduction, we can use the corresponding eigenvec-
tors of the first K eigenvalues of ,and we get Uk =[u1,u2,..,uk].
When projecting the data xi of d dimension to the space of principal
component of k dimension, we can have the data in new coordinate,
denoted by:

©2024 Wang . This work is published and licensed by Example Press Limited. The full terms of this license are available at https://skeenapublishers.com/terms-conditions and incorporate the Creative Commons Attribution – Non
Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from
Emample Press, provided the work is properly attributed.

A Distributed Feature Extraction Method Based on MapReduce 2

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

The new data yi of k dimension (k<d) can represent the principle
component of the original data of d dimension, so we achieve the pur-

pose of dimension reduction, and the algorithm of PCA is described
as algorithm 1.

Algorithm 1: Principal Component Analysis (PCA)
Given: n samples xi ERd, i=1,…,n

1.	 Make the original data into a matrix of X dx N

2.	 Each line of X should minus the average value of the line

3.	 Compute the covariance matrix C=1/N ∑ixi xi
T =1/N XXT

4.	 Compute the eigenvalues λi and corresponding eigenvectors Ui of C

5.	 According to size of the λi, make the corresponding eigenvector Ui into a matrix row by row, take the first k rows of the matrix
U, denoted by Uk

6.	 Compute and get the result of y_i=〖u_k〗^T x_i

The Principle of KPCA
Many nonlinear PCA algorithms have been developed to solve the

limitation of PCA [3]. Kernel PCA (KPCA) is one of them. The meth-
od does not directly calculate the eigenvectors of the sample covari-
ance matrix, it is transformed into the problem of finding eigenvalues
and eigenvectors of the kernel matrix, so it need not compute feature
vectors in the whole feature space. Compared with other nonlinear
feature extraction methods, the KPCA method does not need to solve
nonlinear optimization problems. Commonly used kernel functions
include [4]:

(1)	 Polynomial kernel function

 (2)	 Radial basis function

 (3)	 Sigmoid kernel function

 (4)	 Linear kernel function

 Firstly KPCA use Φ(xk) to make nonlinear transformation for each
sample in xk (K =1, 2,…,m), Φ realize the mapping from sample space
Rn to feature space F [5], for the new sample space, the covariance
matrix now become:

The eigenvalues and eigenvectors of the formula (8) are satisfied

 Multiply both sides of the formula (9) byΥ(x k), we have

For all feature vectors thatλ≠0, we have

By introducing kernel function Kij, we get

Compute eigenvalues and eigenvectors of the kernel matrix K, we
have

α is the feature vector of K matrix, for any vector x, the projection on
principal direction Φ (x) in the feature space is

The general rules for selecting the number of principal element s is

The value of E is usually greater than 85%. The derivation process
above is under the assumption that but this is not
the case in actual situation, so the K in formula 6 should be replaced
by K -, we have

Introduced the projection matrix P=1−L and L is a m-by-m unit ma-
trix whose coefficient of 1/m, so the centered version of the kernel
matrix become K-=PKP. Combining formula (8), (10), (11), and (16)
gives:

Now solution become as bellow:

From formula (18), we can convert the nonlinear problem to the
linear one by introducing kernel function.

Although KPCA is an effective method for solving nonlinear spa-
tial problems, the computation of KPCA on large scale datasets is so
hard and time consuming [6], so we developed a new KPCA algorithm
based on MapReduce, and our algorithm takes polynomial kernel as
kernel function. The principle of MapReduce and our method is dis-
cussed below.

https://doi.org/10.51626/ijeti.2024.05.00076

3

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce

Distributed KPCA Algorithm Based on
MapReduce

MapReduce is a programming model based on Hadoop which de-
veloped by Google, mainly used for big data processing [7]. As the
name suggests, the two main stages of MapReduce include a map phase
and a reduce phase, corresponding to map function and a reduce func-
tion [8]. The framework of MapReduce can be described as Figure1.
From Figure 1, we can see that the data input by user is mapped into an

intermediate form by the map function, then the intermediate results
can be made as the input of the reduce function. Finally, the reduce
function outputs the result of the program. All this is done by is the
basic data structure of MapReduce called <key, value> pair. A map
function is invoked only once for each input<key, value>pair in map
phase, the intermediate results are generated in pairs and are shuffled
by the underlying system [9]. In reduce phase, a reduce function will
merge, group and sort the values by keys, and generate <key, value>
pairs.

Figure1: Framework of MapReduce.

The process of change for <key, value> pairs in the map stage is
shown in the formula (19):

The process of change for <key, value> pairs in the map stage can be
described by formula 20:

We know that the multiply of matrix can be parallel executed, so we
develop a distributed KPCA algorithm based on MapReduce, we call it

MRKPCA, the algorithm is composed of three sub algorithms, Name-
ly Map-function, Combine-function and Reduce-function.

A.	 Map-function.The input datasets is stored in HDFS in the
form of <key, value> pairs, each pair represents a record in the datasets
[10]. The key is the offset in bytes to the start point of this record in
the data file, and the value is the content of this record in String. Dat-
asets are split and broadcast to all map-function. For each map task,
MRKPCA construct an array containing the information about the
covariance matrix, then a map-function can can compute the index of
each sample. The intermediate result are split into two parts: the row
index and the column index of the value. The executing process of map
function is shown as algorithm 2.

Algorithm2: map (key, value)

Input: the row position of the covariance matrixφ(x) andφT(x), the column position of the covariance matrixφ(x) andφT(x), the
value of the covariance matrixφ(x) andφT(x)

Output: <key, value> pair, where the key is the position index of the matrixφ(x) andφT(x) and value is the intermediate value of
the covariance matrixφ(x) andφT(x)

1. Construct the covariance matrixφ(x) andφT(x) from the original data.

2. Define a String array value to store the position index and the value ofφ(x) andφT(x).

3. Define three Strings such as “rowindex”, “colindex”, “elevalue” to initialize value;

4. For i=0 to matrixφ(x). length do

5. collect (rowindex + i +colindex+elevalue));

6. End For;

7. Repeat the process of step 4;

8. Compute the value of the sum of different dimensions;

9. Output < key, value > pair;

10. 9. End

https://doi.org/10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce 4

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

Step 4 and Step 6 record location information for each value, in
which the function collect returns the information of each data of ma-
trix on each node; The intermediate result outputs in < key ,value >
pair at data step 8.

B.	 Combine-function. We use a combiner to merge the inter-

mediate data when each map task is finished. In combine function,
we calculate key and value of the points assigned to the same cluster.
To calculate the value of the matrix multiplication in each cluster, we
record the number of samples in same cluster at each map task stage.
The process of out combine function is shown in algorithm 3.

Algorithm 3: combine (key, V)
Input: key (the index of the cluster), N (the list of the samples assigned to the same cluster)

Output: < key, value > pair

1. Initialize the list N;

2. Initialize a counter num =0;

3. For i=0 to matrixφ(x). length do

4. int result = 0;

5. result +=φ(x) [i] *φT(x) [i];

6. collect (key, new Text (Integer.toString(result)));

7. End For

8. Replaceφ(x) with a kernel matrix K and repeat Step 3

9. Compute eigenvalues and eigenvectors of the kernel matrix K and get the projection vector Vj (j=1, 2,…,n) of principle
component in feature space

10. Take key as key value in < key, value > pair ;

11. Compute the value of the sum of different dimensions;

12. Output < key, value > pair;

13. 9. End

C.	 Reduce-function. The Reduce function takes the result of the
combine function as input. In this function, we compute the sum of
all samples and compute the number of samples that assigned to same

cluster. So the process of reduce function can be described as in Algo-
rithm 4.

Algorithm 4: reduce (key, R)

Input: key (the index of the cluster), R (the list of partial sums from different host)

Output: < key, value > pair

1. Initialize one array A to compute the samples in the list R;

2. Initialize a counter num =0;

3. While(R.hasNext()){//when there is sample in R

4. Compute the number of samples N;

5. A=sum(N);//sum the number of different dimensions and assign to the array A

6. num++;

7. }

8. Dividing the array according to num;

9. Take key as key value in < key, value > pair ;

10. Compute the value of the sum of different dimensions;

11. Output < key, value > pair;

12. 9. End

The dependent variable should multiply with the corresponding ele-
ment of hidden node vector. However, the intermediate value can be
a string and the result of multiplying the dependent variable in the
reduce function. MapReduce can work well on computing matrix in

parallel, so our method has greatly improved the efficiency of KPCA.
To examine the result of our method, we made an experiment, as dis-
cussed below.

https://doi.org/10.51626/ijeti.2024.05.00076

5

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce

Experiment
We use the ORL standard face database as experimental datasets in

our experiment. The datasets consist of 40 images taken at different
times with different change such as pose, angle, scale, expression and
eyes. Each person’s face is made up of 10 images with 112 x 92 pixels.

In our experiment, we choose 5 images per person as training samples,
and the other 5 images are selected as test samples. In order to verify
the effectiveness of the proposed method, the recognition efficiency of
PCA, KPCA and MRKPCA methods in ORL face databases are com-
pared. The experimental condition of one PC in a cluster and meas-
ures are shown in table 1.

Table 1: Experimental condition and measures.

Operating System CentOS 6
CPU I712700h

Memory 8G
Software Hadoop 2.2, Java 1.8
measures speedup, scaleup and size up, cumulative contribution rate

The Evaluation Measure

As we mentioned in the preceding paragraph, we use scaleup, sizeup
and speedup to evaluate the performance of our algorithm. The three
measurements are explained as follows:

Scaleup: Scaleup measure is defined by formula (21):

Sizeup: Sizeup measure is defined by formula (22):

 Speedup: Sizeup measure is defined by formula (23):

Where T1 is the execution time of on single core, Tm is the execution
time for processing m*data. Tp is the execution time of the parallel
algorithm with p processors.

In solving practical problems, if there are p principal components
altogether, we generally don’t need all of it, but only get the first K
principal components according to the size of cumulative contribution
rate.

Definition 1. In the principal component analysis, we call ratio of
variance of the i-th principal component to sum of variance of all prin-
cipal components as contribution rate, denoted by:

Where p is the number of principal components, the value of ηi is
bigger, then the corresponding principal component will have a more
powerful information.

Definition 2. According to Definition 1, we call η(k) as cumulative
contribution rate of the first k principal components, it is computed
by formula (25)

If η(k) >= 85%, it means the first k principal components contains all

measurement indexes of the information, this not only reduces the
number of variables but also facilitates the analysis and research of
practical problems.

Result Analysis

 From Figure 2 we can see that the scaleup fall shortly as the num-
ber of cores increase. Its average scalability is higher than 80% for the
datasets. The scaleup performance is stable slowly when the datasets
becomes larger, that indicate our method has a good scalability.

Figure 3 shows the good sizeup performance of our algorithm on
multiple core. When the number of cores is smaller than 4, the sizeup
value differ little. Compared to 2 or 4 cores on the same datasets, the
sizeup value of 8 cores and 16 cores decreases significantly. This indi-
cate a good linear performance of our algorithm.

We have made four experiments on the datasets whose size range
from 1GB to 8GB. We can see from Figure 4 that the speedup per-
formance does not work well on datasets of 1GB. As shown in Figure
5, the overall computing time decreases gradually before the number
of reducers reaching 4, and the degree of parallelism increases with
increase of reducers, when the number of reducers is 4, it reaches its
minimum.

The higher cumulative contribution rate will get a higher the recog-
nition rate, the relation between cumulative contribution rate of these
methods and their recognition rate is shown as Figure 6.

Figure 6 shows that image recognition rate is becoming higher with
the increase of cumulative contribution rate in the three methods, but
recognition rate of our proposed methods is always higher than the
other two methods.

Feature extraction speed ratio is the ratio of time consuming of
KPCA and MRKPCA for the same set of test samples, table 2 lists the
speed ratio of feature extraction for different images using the two
methods. As can be seen from table 2, the number of bases is different
for different images, that means the dimension number of subspace
is different when the training samples of these images are projected
onto these subspace. However, the number of bases is less than the
number of training samples, indicating that there is a linear correla-
tion between the samples. Actually, both KPCA and MRKPCA have a
good effect of feature extraction.

The time efficiency of KPCA and MRKPCA is also studied in our
experiment. Under the same conditions, we test the run time of KPCA
and MRKPCA on different cumulative contribution rate, the result is
shown in Table 3 and Figure 7. From the feature extraction speed ratio
in table 1, we can see that MRKPCA is faster than KPCA. The results
of table 2 and figure 7 show that MRKPCA runs less time than KPCA
under the same conditions, so the time efficiency of our method is
higher than KPCA in image recognition.

https://doi.org/10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce 6

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

Figure 2: Scaleup of MRKPCA.

Figure 3: Size up of MRKPCA.

Figure 4: Speedup of MRKPCA.

https://doi.org/10.51626/ijeti.2024.05.00076

7

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce

Figure 5: Computing time with different number of reducers.

Figure 6: Cumulative contribution rate and image recognition rate in three methods.

Table 2: Feature extraction speed ratio of KPCA and MRKPCA on different images.

Sample image number 1 2 3 4 5

Number of samples 1000 1000 1000 1000 1000

Number of bases 616 984 730 532 742

Feature extraction ratio 7.04 4.6 12.61 14.59 6.51

Table 3: Run time of the two algorithms on different cumulative contribution rate.

cumulative contribution rate
Algorithm time-consuming (seconds)

KPCA MRKPCA

70% 158.6 163.5

75% 187.1 168.9

80% 192.6 170.1

85% 193.2 171.2

90% 194.1 172.9

95% 195.2 173.2

https://doi.org/10.51626/ijeti.2024.05.00076

A Distributed Feature Extraction Method Based on MapReduce 8

Citation: Wang Y, Hongqiang H, Xuning L. A Distributed Feature Extraction Method Based on MapReduce. Int J Eng Tech & Inf. 2024;5(2):1-8.
DOI: 10.51626/ijeti.2024.05.00076

Figure 7: Run time of the two algorithms on different cumulative contribution rate.

Conclusion
 To address the computational performance issue of KPCA on large-

scale datasets, we proposed a parallel MRKPCA algorithm based on
KPCA and MapReduce and implemented it on ORL standard face
database. Experimental result show that our proposed MRKPCA al-
gorithm can not only process large scale datasets, but also has a good
speedup, scaleup and sizeup performance, and the time efficiency of
our method is higher than KPCA. All this give us confidence for re-
search parallel algorithm in the future work.

Acknowledgement
This paper is supported by Doctoral Research Initiation Fund of Shi-

jiazhuang University (No.23BS019).

References
1.	 BJ Kim (2012) “A Classifier for Big Data” in Proceedings of the 6th

International Conference on Convergence and Hybrid Information
Technology, Daejeon, Republic of Korea.

2.	 Wu G, Xu J (2015) Optimized Approach of Feature Selection Based on
Information Gain [C]. 2015 International Conference on Computer
Science and Mechanical Automation (CSMA) 157-161.

3.	 Wu G, Wang L, Zhao N, Lin H (2015) Improved Expected Cross En-
tropy Method for Text Feature Selection[C]. 2015 International Con-
ference on Computer Science and Mechanical Automation (CSMA)
49-54.

4.	 Tang J and Zhou S (2016) A New Approach for Feature Selection from
Microarray Data Based on Mutual Information[J]. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 13(6): 1004-
1015.

5.	 Marko S, Nathaniel P, Ee P, Lim JJ (2017) Tweets and Votes: A Study of
the 2011 Singapore General Election [C]. International Conference on
System Sciences, Singapore 231-243.

6.	 Pang L (2018) Sentiment Classification using Machine Learning Tech-
niques [C]. Conference on Empirical Methods in Natural Language
Processing, Philadelphia 221-231．

7.	 Adam B, Alan FS (2011) Using Twitter to monitor sentiment and pre-
dict election results [C]. Proceeding of the Workshop on Sentiment An-
alysis where Al meets Psychology (SAAIP) Chiang Mai 2-10．

8.	 Bakliwal A, Arora P, Madhappan S, Kapre N, Varma V (2017) Mining
sentiments from tweets [C]. Proceeding of 3rd Workshop Computing
11-18.

9.	 Terrana D, Augello A, Pilato G (2017) Automatic unsupervised polar-
ity detection on a Twitter data stream[C]. International Conference of
Semantic Computing, Newport Beach 128-134．

10.	 Saif HY, Alani H (2016) Alleviating data sparsity for Twitter sentiment
analysis [C]. Proceeding of CEUＲWorkshop, Urbana 122-129．

https://doi.org/10.51626/ijeti.2024.05.00076
https://www.computer.org/csdl/proceedings-article/csma/2015/9166a049/12OmNBf94YF
https://www.computer.org/csdl/proceedings-article/csma/2015/9166a049/12OmNBf94YF
https://www.computer.org/csdl/proceedings-article/csma/2015/9166a049/12OmNBf94YF
https://www.computer.org/csdl/proceedings-article/csma/2015/9166a049/12OmNBf94YF
https://pubmed.ncbi.nlm.nih.gov/26761857/
https://pubmed.ncbi.nlm.nih.gov/26761857/
https://pubmed.ncbi.nlm.nih.gov/26761857/
https://pubmed.ncbi.nlm.nih.gov/26761857/
https://aclanthology.org/W11-3702/
https://aclanthology.org/W11-3702/
https://aclanthology.org/W11-3702/
https://aclanthology.org/W12-3704/
https://aclanthology.org/W12-3704/
https://aclanthology.org/W12-3704/
https://ceur-ws.org/Vol-838/paper_01.pdf
https://ceur-ws.org/Vol-838/paper_01.pdf

	Abstract
	Keywords:
	Introduction
	The Principle of PCA
	Distributed KPCA Algorithm Based on MapReduce
	The Principle of KPCA
	Experiment
	Table 1
	Figure 2:
	Figure 3:
	Figure 4:
	Table 3:
	Table 2:
	Figure 6:
	Figure 5
	Figure 7:
	Conclusion
	Acknowledgement
	References

