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Abstract
Rolling element bearings are commonly used in supporting rotor components and assemblies in rotating machinery. Bearing defects can lead 

to undesirable vibrations, noise, or machine failure. Modern predictive maintenance techniques are increasingly adopting artificial intelligence 
(AI) techniques for bearing fault diagnosis. In this work, wavelet analysis is used to process vibration signals from three bearing cases. These 
are: no fault, inner race fault, and ball fault under varying rotating speed. Small set of the wavelet scalogram images are fed into a Convolutional 
Neural Network (CNN) model for the classification of bearing defects into four classes based on operating speeds. Even with small sample size 
for training, we have been to achieve classification accuracies of around 90% with a specific combination of CNN parameters.

Keywords: Convolutional neural network, Deep learning; Fault diagnosis, Rolling element bearing, Vibration signals, Wavelet analysis

Abbreviation: AI: Artificial Intelligence; CNN: Convolu-
tional Neural Network; DL: Deep Learning; ML: Machine Learning; 
EFMF: Energy-Fluctuated Multiscale Feature; PSR: Phase Space Re-
construction; BP: Backpropagation; DBN: Deep Belief Network; DAE 
: Deep Auto-Encoder; MC-CNN: Multi-Scale Cascade Convolutional 
Neural Network; OEDTN: Optimal Ensemble Deep Transfer Network; 
DTNs: Deep Transfer Networks; CWT: Continuous Wavelet Trans-
form; DNN: Deep Neural Network; ANN: Artificial Neural Network; 
RPN: Region Proposal Network; SVM: Support Vector Machines

Introduction
Rolling bearings are crucial components of all types of rotating 

machinery equipment. Bearing fault diagnosis has been a subject of 
great importance in machine condition monitoring, predictive main-
tenance, and machine failure prevention and analysis. It has received 
considerable attention from researchers in both academia and the 
industry. In recent years, machine learning and deep learning-based 
intelligent fault diagnosis methods of rolling bearings have been wide-
ly and successfully developed. Many researchers have attempted to 
bridge the gap between established fault diagnosis expert rules and 
artificial intelligence (AI) methods. Deep Learning (DL) is a branch 
of Machine Learning (ML), with a deep multilayered architecture that 
has multiple levels of data abstraction and feature extraction. DL algo-

rithms often require large computation resources. However, the low 
cost and high computational ability of modern computer processors 
accelerated the development and deployment of DL algorithms. Con-
volutional neural network (CNN) is one of the popular DL models that 
can perform feature learning and pattern classification automatically. 
In the following a review of previous work in the field of bearing fault 
diagnosis using DL is presented.

Z. Chen, et al. [1] employed three deep neural network models 
(Deep Boltzmann Machines, Deep Belief Networks and Stacked Au-
to-Encoders) to evaluate the performance of deep learning models 
for rolling bearing fault diagnosis. They discussed four preprocessing 
schemes including time domain, frequency domain and time-fre-
quency domain features extracted from vibration signals. The accur-
acy achieved by Deep Boltzmann Machines, Deep Belief Networks and 
Stacked Auto-Encoders are highly reliable and applicable in fault diag-
nosis of rolling bearing. They also concluded that deeper architecture 
of deep neural network does not necessarily lead to better results. A 
novel energy-fluctuated multiscale feature (EFMF) mining method for 
spindle bearing fault diagnosis was presented in [2]. In this technique, 
the wavelet packet (WP) energy is first rebuilt into a 2-D image space 
by the phase space reconstruction (PSR), to reconstruct a local rela-
tionship of the WP nodes and reveal the energy fluctuation in a new 
WP phase space. Then these acquired WP images are used as the input 
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to the deep CNN, where the backpropagation (BP) algorithm is em-
ployed to fine-tune the architecture by minimizing the log-likelihood 
function. Adaptive nonlinear signal decomposition and unsupervised 
feature learning method by using convolutional restricted Boltzmann 
machine model were proposed in [3]. This method automatically 
captures shift-invariant patterns hidden in the original signal and de-
compose the original signal into several fault-related sub-components, 
i.e., transient impulses signal, could be likely extracted. Subsequently 
maximizing kurtosis is applied to select optimally latent fault compon-
ent. In [4], the authors proposed a novel domain adaptation method 
for rolling bearing fault diagnosis based on deep convolutional neural 
network architecture. 

They showed that their domain adaptation methods were able to 
learn the domain-invariant features under two different motor loads 
and performed successful bearing faults diagnosis in the new domain 
that is different from the one with data available for training. Attention 
mechanism is introduced to assist the deep network to locate informa-
tive data segments and to extract the discriminative features as inputs 
to assist a deep network and to visualize the learned diagnosis know-
ledge [5]. The study aimed at bridging the gap between well-estab-
lished fault signal processing approaches and deep learning methods. 
An ensemble deep learning diagnosis method based on multi-object-
ive optimization was proposed in [6]. In this method, the Convolu-
tion Residual Network (CRN), Deep Belief Network (DBN) and Deep 
Auto-Encoder (DAE) were weighted and integrated to realize the ef-
fective diagnosis of rotor and bearing faults for rotating machinery. A 
literature review of the applications of three popular DL algorithms for 
bearing fault diagnosis was discussed in [7]. These are the Autoencod-
er, the Restricted Boltzmann Machine, and the Convolutional Neural 
Network. A hybrid deep signal processing method for bearing fault 
diagnosis is presented in [8] that incorporates vibration analysis tech-
niques into deep learning. This is performed for automatic raw vibra-
tion signal processing, feature extraction, and bearing fault diagnosis. 
In [9], an improved CNN named multi-scale cascade convolutional 
neural network (MC-CNN) is proposed for the classification informa-
tion enhancement of input. This was achieved by adding a new layer 
before convolutional layers to construct a new signal by concatenating 
the signals convolved by original input and kernels of different lengths. 
They also added a convolutional layer with kernels of small size and a 
pooling layer after the multi-scale cascade layer to reduce the neur-
ons produced by the multi-scale signal. This technique was applied 
to pattern classification of bearing vibration signal under normal and 
noise environments. The kernels act as filters of different resolutions 
to distinguish the different faults signals in the frequency domain. 
Feature matching method based on multi-kernel maximum mean dis-
crepancies between source domain and target domain is adopted to 
get enough labeled target domain signals in [10]. 

These rolling bearing signals are then converted to multi-dimension-
al graph samples before being fed into the CNN model. Generaliza-
tion was improved, under variable operating conditions, by combining 
model-based transfer learning with feature-based transfer learning to 
initialize and optimize the CNN. A systematic and comprehensive re-
view of the existing literature on bearing fault diagnostics with deep 
learning (DL) algorithms can be found in [11]. An optimal ensem-
ble deep transfer network (OEDTN) for rolling bearing fault diagno-
sis with unlabeled data was proposed in [12]. The proposed method 
firstly takes advantage of parameter transfer learning, domain adapta-
tion and ensemble learning. Different kernel MMDs are first used to 
construct multiple diverse deep transfer networks (DTNs) for feature 
adaptation. Then, parameter transfer was applied to optimally initial-
ize these DTNs. The last step involved the use of ensemble learning to 
combine these DTNs to acquire the results. A comprehensive metric 
was designed to guide the particle swarm optimization to assign suit-
able voting weights for each DTN. Yanwei Xu, et al. [13] proposed 
an intelligent diagnosis method of rolling bearing fault based on an 

improved convolution neural network and light gradient boosting 
machine. In this method, the generalization ability of the model is im-
proved by replacing the full connection layer with the global average 
pooling layer. The extracted features are classified by a light gradient 
boosting machine. 

A 1D-CNN network architecture was proposed to effectively im-
prove the accuracy of the diagnosis of rolling bearing, and the num-
ber of convolution kernels decreases with the reduction of the con-
volution kernel size [14]. The method directly used original bearing 
vibration data without preprocessing. A dropout layer was added to 
the 1D-CNN model to enhance its generalization. Many DL and CNN 
based applications have also been reported in [15,16]. A comprehen-
sive review of the developments made in rotating bearing fault diagno-
sis during the past decade is presented in [17]. This review discussed 
various signal processing techniques, classical machine learning ap-
proaches, and deep learning algorithms used for bearing fault diag-
nosis. It also highlighted the available public datasets that have been 
widely used in bearing fault diagnosis experiments. 

However, due to the required computation time and large data re-
quired for training, these methods may cause extended latency time 
when they are applied to machine fault diagnosis at the edge for re-
al-time machine condition monitoring applications. The goal of this 
paper is to evaluate the feasibility of the implementing CNN with small 
data availability. The remaining sections of this paper are arranged, as 
follows. Section 2 presents a summary of the experimental procedure. 
Section 3 describes the CNN method, and its implementation is this 
work. Section 4 presents results and discussion. Finally, Section 5 pre-
sents the conclusion of this paper.

Experimental Procedure
A schematic of the experimental setup is shown in Figure 1. Three 

ball bearing conditions are considered. These are no fault, inner race 
fault, and ball fault. The rotor is run at 10 speeds (from 500rpm to 
1400rpm) in increments of 100rpm. At each speed vibration signals 
are acquired using a a PCB accelerometer (model PCB 302A) which 
is moutned on the outboard test bearing as indicated in Figure 1. The 
sampling rate is 10,000 samples/sec. A radial load of about 2000lb was 
kept constant during all tests. A small unbalance mass is added to 
the rotor to introduce sustained periodic vibation excitation. Figure 
2 shows sample raw vibration data and its corresponding frequency 
spectrum obtaine using the FFT algorithm. The raw time vibration 
signals are also analyzed using the continuous wavelet transform 
(CWT) techniques. Figures 3 presents sample scalograms. 

Figure 1: Experiment setup.

Wavelet transform is being increasingly used as a signal processing technique 
[18]. Continuous wavelet transform (CWT) analysis was performed 
using the MATLAB’s wavelet toolbox. After experimenting with sever-
al wavelet transform functions, it was decided to use the ‘Mexican hat’ 
and the coiflet wavelet function. MATLAB’s CWT can be considered 
as a filter that scales a mother wavelet function along the time axis. 
At each scale, the CWT function will superimpose the scaled mother 
wavelet wave form over a segment of the signal under analysis.            
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The similarities and differences between the form of the wavelet 
wave and the signal being analyzed are determined by the CWT 

Figure 2:  Vibration time signatures and corresponding FFT spectrum for 
two bearing cases.

Figure 3:  Sample wavelet scalogram images for the three bearing conditions 
at 600 rpm (left) and at 1300 rpm (right).

Where ψ(t) represents the CWT mother wavelet function which is 
shifted in time by T and dilated or contracted by a factor and then 
correlated with the vibration signal represented by x(t). The MATLAB 
toolbox gives the option to show the result of the CWT as a scalogram 
image. Several sample images for the vibration signals obtained from 
different bearing conditions are shown in Figure 3. The vertical axis 
represents the dilation or contraction of the mother wavelet function 
with large dilations at the top and smaller contractions at the bottom 
of the image. The horizontal axis in Figure 3 is labeled as the sam-

ple points in the acquired vibration signature. Each image represents 
only 1000 sampled points. Bright areas represent strong correlations 
between the vibration signal and the wavelet wave for a particular 
scaling while darker regions represent poor signal agreement. In the 
scalogram images, high scale values (top) of a scalogram represent low 
frequency content and low scale values (bottom) of a scalogram repre-
sent signal components with high frequency.

Method
Deep neural network (DNN) is a subtype of artificial neural net-

work (ANN) with multiple hidden layers of units embedded between 
the input and output layers which has been widely used in the field 
of image processing and classification. Unlike ANNs which use fea-
tures extracted from the images as features, DNNs use the images 
themselves and can self-extract features. Deep neural networks can be 
trained to learn such features at different levels of abstraction which 
may not be explicitly visible to the human eye even in a 2D image 
[18]. Deep Convolutional Neural Network (ConvNet or CNN) is a 
deep neural network which can take in an input image, assign import-
ance (learnable weights and biases) to various aspects of the image and 
be able to design a classifier to distinguish images from one another. 
The preprocessing required in a CNN is much lower as compared to 
other classification algorithms. With enough training, CNNs have the 
ability to learn the characteristics of these filters in order to produce 
classification based on image labels. A convolutional neural network 
was shown to obtain good classification in detecting optical defects 
in [19]. It has been shown that CNNs can achieve an error rate of 7% 
for automated defect detection compared to manual visual inspection 
method in steel specimens in [20]. A CNN has been used to detect 
damage in gearboxes in [21] with classification accuracies exceed-
ing 99%. Convolutional neural networks (CNN) are a subset of deep 
learning neural networks developed specifically for image processing 
and classification. 

The advantage of CNN is that it can automatically detect features 
from an image map. The features are used to train the classifier. The 
architecture of a CNN is different from an artificial neural network 
(ANN) in that every CNN uses three types of layers – convolution lay-
er, pooling layer and a fully connected layer. ANN on the other hand 
has an input layer, one or many hidden layers and an output layer. In 
a CNN there are usually multiple stages of convolutional and pooling 
layers. A sample image is fed to the convolutional layer which uses 
linear and nonlinear functions to create a feature map from the input 
image by a kernel operation. The kernel is a two-dimensional matrix 
that when applied to the input image produces regions of high or low 
activations in the input – these are the self-extracted features. Usually 
there are multiple kernels, and the convolution layer produces as many 
feature maps as the number of kernels used. The activation function, 
usually nonlinear functions such as the hyperbolic tan (tanh) or the 
sigmoid function, or piecewise linear activation functions such as the 
rectified linear unit (ReLu) are used to create a fully activated feature 
map. 

The activation output yI
j of the jth particular feature map in the con-

volutional layer l, after adding the bias and passing through an acti-
vation function, is given by equation 2 in [22] and reproduced here. 

                                                                                                          (2)

where Φ is the activation function, bi
j is the scalar bias for l layer, MI

j 
is the selected feature map i in the (l − 1) layer which is summed over 
by the feature map j in the l layer, *denotes the convolutional operator 
that convolutes the activation yi

j
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After each convolution layer, the extracted feature sets pass through 
the pooling layer. The pooling layer is essentially a downsampling 
operation that reduces the in-plane dimensionality of the feature map. 
The activation output dl

h after downsampling the feature map j into 
a feature map h in a layer l is given by equation 3 in [22] and repre-
oduced here. 

                                                                                                       (3)

where Ψ is the downsampling function such as maximum or mean 
function that down samples by a factor of Nl and al

j is the convoluted 
(and activated) feature map to be downsampled. The downsampling 
factor should be selected to ensure there is no loss of information in 
the feature maps due to dimensionality reduction. As the original 
input passes through successive stages of convolution and pooling, 
the network learns to efficiently represent the input image with rela-
tively high-quality features of manageable dimensions. The output of 
the final pooling layer is flattened to create a one-dimensional array 
which is then connected to one or more fully connected layers. These 
are dense layers in which inputs and outputs are connected through 
a learnable weight (similar to an ANN). These are mapped to class 
probabilities in the classification task. The final fully connected layer 
has the same number of output nodes as the classes, and each fully 
connected layer is followed by an activation function such as ReLu or 
tanh. The activation at the last fully connected layer (output nodes) 
is different from the what is applied to the output of the convolution 
layer – it is usually a multi-class classification task activation such as 
softmax function which normalizes the real-valued output from the 
last layer to class probabilities. 

Region-based CNN or RCNN is a variant of CNN that uses bound-
ing boxes over different regions of the image and applies convolution 
independently to those regions [23]. They are especially useful when 
the number of occurrences of objects of interest across images used for 
training is not fixed with varying spatial locations and aspect ratios. 
RCNNs use a selective search method to extract region proposals (a set 
of 2000 regions). RCNNs’ image segmentation capabilities have been 
shown to be better than traditional CNN, although it does tend to be 
slower and requires more storage than traditional CNN does. Fast-
RCNN [24] and Faster-RCNN [25] significantly improve the efficiency 
of RCNN and reduce storage requirements by not having to feed mul-
tiple region proposals to the convolutional network every time. In-
stead, the convolution operation is done only once per image and a 
feature map is generated from it. Faster-RCNN uses a trainable re-
gion proposal network (RPN) instead of category-independent region 
proposals such as selective search or constrained parametric min-cuts 
that RCNNs use. The RPN is simply a neural network that proposes 
multiple objects that are available within a particular image. 

Vibration signals are processed using wavelet transform and con-
verting them to 2D images of size 514 x 649 pixels with three color 
channels. The image is first resized to 82 x 110 x 3 and then the three 
channels are combined into yield a single 2D image. These are used 
as inputs to the CNN and RCNN used in this work. The deep neural 
network toolbox for MATLAB described in [26] is used in this work. 
The network architecture for the CNN is described below and shown 
in Figure 4. 

 •	 The first layer following the input layer is a convolutional lay-
er with 12 or 6 feature maps of kernel size 11 × 11 and 15 x 15. For a 
kernel size of 11 x 11, the result is a convoluted image of size 72 x 100, 
and for the 15 x 15 kernel, the result is a convoluted image of size 68 x 
96. This is followed by a mean-pooling layer of size 2 × 2 resulting in 
pooled activations at 36 x 50 or 34 x 48. 

•	 The next layer is a convolutional layer with 12, 6 or 3 feature 
maps of 5 × 5 resulting in convoluted images of size 32 x 46 for pooled 
activated images of size 36 x 50 or convoluted image of size 30 x 44 
for pooled activated images of size 34 x 48 after the first layer. This is 

followed by a 2 × 2 mean-pooling layer resulting in pooled activations 
at 16 x 23 or 17 x 24. 

•	 This is followed by a third convolutional layer with 6 feature 
maps of 7 x 8 or 8 x 9 resulting in convoluted images of size 10 x 16 for 
all cases. This is followed by a size 2 x 2 max-pooling layer resulting in 
pooled activations of size 5 x 8. This vector is flattened so that input to 
the classification part of the network is of size 40 x 1.

•	 The output layer contains 4 neurons corresponding to the 4 
different fault states. These are low-speed + no-defect (0), high-speed 

Figure 4: A schematic of the CNN algorithm for bearing fault diagnosis.

+ no-defect (1), low-speed + defect (2), and high-speed + defect (3). 
The class label assignments are shown in Table 1. All the layers are fully 
connected. ReLu and tanh functions is used as activation functions. 
Stochastic gradient descent method is used to train the network with a 
learning rate of 1. The batch size is 5 and the training was carried out 
for 50 epochs. 

The architecture of RCNN is shown in Fig. 5. The detector first gen-
erates region proposals using Edge Boxes [27], the proposed regions 
Figure 5 are cropped out of the image and resized. The CNN described 
above is used to classify the cropped and resized regions. The region 
proposal bounding boxes are refined by a Support Vector Machines 
(SVM) that is trained using CNN features. Both trainRCNNObject-
Detector() and trainFastRCNNObjectDetector() functions in the 
computer vision toolbox of MATLAB are used in this study. While 
the former is show in training and detection, both allow customized 
region proposals. 

Figure 5: Architecture of the RCNN algorithm.

The following datasets are used:

•	 Dataset 1: no overlap between successive signals (both Mex-
ican Hat and Coiflet 4 wavelets) for all three conditions with 180 scalo-
gram images

•	 Dataset 2: 50% overlap between successive signals (both Mex-
ican Hat and Coiflet wavelets) for all three conditions with 120 scalo-
gram images

•	 Dataset 3: 25% overlap between successive signals (both Mex-
ican Hat and Coiflet wavelets) for all three conditions with 120 scalo-
gram images. 

•	 Dataset 4: All Mexican Hat wavelet scalograms (for all three 
conditions – seeded ball fault, seeded inner race fault and no fault) 
with non-overlapping and overlapping signals with 210 images.

( ),l l l
h jd a N= Ψ
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•	 Dataset 5: All Coiflet wavelet scalograms (for all three con-
ditions – seeded ball fault, seeded inner race fault and no fault) with 
non-overlapping and overlapping signals with 210 images.

•	 Dataset 6: The entire dataset of 420 images is also used as a 
benchmark for comparison. 

70% of the images in each set are used for training and 30% for valid-
ation (70-30 split). A three-fold cross-validation technique is used to 
create the training and validation subsets. The folds were first scanned 
to ensure that all samples from all four classes are evenly distributed 
in the training set. The classification results are analyzed using the fol-
lowing metrics – Accuracy, Precision, Recall and F-score. Accuracy is 
defined as the ratio of the total number of correctly assigned samples 
to the total number of samples in the validation subset. For example, 
in dataset 1 where 126 images are used for training and 54 for valida-
tion, if 5 out of the 54 images are incorrectly identified, the accuracy of 
the classifier is 0.91. Precision is used to measure correctness of a clas-
sifier and is sometimes called the positive predictive value while Recall 
is used to measure the completeness (or the sensitivity in binary classi-
fication). These two measures are calculated on each of the four classes 
one at a time. Precision on a certain class is the ratio of the number of 
samples in the testing set that are correctly classified as belonging to 
that class to all of the samples that are classified as belonging to that 
class. Recall is the ratio of correctly classified samples of that class to 
the total number of samples for that class. Class-wise average values of 
precision and recall are used to calculate the F-score as shown below.

TP (True Positives) Samples correctly classified as belonging to a 
certain class

FP (False Positives) Samples incorrectly classified as belonging to a 
certain class

FN (False Negatives) Samples that actually belong to a certain class 
but incorrectly classified as belonging to another class

To calculate accuracy, we use the total misclassifications (total FN 
or FP); precision, recall and F-score are based on TP, FP and FN for 
the median class with respect to misclassifications as calculated from 
a confusion matrix. 

Results and Discussion
In this work, classification problem as a 6-class problem where the 

differentiators are operating speed (high speeds above 1000rpm and 
low below 1000rpm) and type of fault (seeded ball defect, seeded inner 
race fault and no fault). The class labels are shown in Table 1. Different 
combinations of kernel size, number of feature maps (# of kernels) in 
the convolutional layer and the type of pooling strategy for the CNN 
are listed in Table 2. Accuracy, precision, recall and F-score for the 

different parameter combinations for the six datasets are reported in 
Tables 3-8. It was observed that three combinations of feature map 
numbers and kernel size over the three layers produced the best re-
sults (Combinations # 2, 10 and 12) It is also very clear that decreasing 
the number of feature maps affected the classification accuracy, which 
makes intuitive sense. Since all combinations resulted in the same 
number in the flattened classification layer (40 neurons), we were able 
to overcome the problem reported in [22] where increasing the num-
ber of neurons in the classification layer, the network seems to lose its 
sensitivity to distinguish between classes. In the same work, it was also 
observed that when the number of feature maps in the first convolu-
tion layer was increased, while decreasing the number of feature maps 
in the second layer, the classification performance increased. We ob-
serve a similar trend but not to the extent as reported in [22]. The bal-
ance between number of feature maps and kernel size is important so 
as to avoid under-training and over-training the network. It was also 
observed that the choice of activation methodology (ReLu or tanh) did 
not produce any significant difference in classification performance. 

The computational load on the network is less with ReLu activation 
since not all neurons are fired at the same time – which has implica-
tions in training time of the network. The Coiflet wavelet scalograms 
(dataset #5 in Table 7) seems to have a better discriminating ability 
than Mexican Hat wavelet scalogram images (dataset #4 in Table 6). 
A Coiflet filter acts as band-pass filter as well as a high-pass or low-
pass filter. Unlike the Mexican hat-based filter which acts only as a 
pass-band filter, the Coiflet-based filter allows for selecting horizontal, 
vertical or diagonals details of the original image. The Coiflet wave-
lets have more spatial information than Mexican Hat wavelet but have 
been shown to do poorly in the presence of a high amount of noise 
[28]. Results in our work compare favorably to results on larger dat-
aset (CWRU Bearing dataset, 48,000 samples) using Scalograms and 
Switchable Normalization-based CNN [29] and slightly better results 
using the classical CNN as reported on the same CWRU Bearing dat-
aset [30]. 

For the RCNN, we have used the best parameter combination re-
sulting from the independent runs of the CNN (CNN parameter 
combination #12). Regions are extracted using Edge Boxes [27] and 
these regions are stitched together to create a warped region which 
is then fed to the CNN instead of the original scalogram. Both the 
regular RCNN object detector and the Fast RCNN object detector are 
used separately. The validation results for the six datasets are shown in 
Table 9. In most cases, we see a relatively high classification accuracy 
by 20-50 epochs of the max 50 epochs used in the study. The bench-
mark dataset (dataset # 6) which has 294 training images and 126 
validation images performed only marginally better than dataset # 1 
which had no overlap, implying that using the overlapping bounding 
scalograms had little incremental effect on classification accuracy of 
the algorithm. The region-based information in Coiflet wavelets is also 
richer and more discriminating compared the Mexican Hat wavelets. 
The run-time for the Object Detector algorithm (run separately from 
the CNN) is also given in Table 9 for simulations using MATLAB deep 
neural learning toolbox on Intel i7-8650 CPU @ 1.9 GHz with 4 cores 
and 8 logical processers. The implementation on a GPU or dedicated 
multi-core processors will be significantly faster. 

Table 1: Class labels for different combinations of operating speeds and defect conditions.

# Operating Speed (rpm) Defect Class label
1 500 No defect 0
2 600 No defect 0
3 700 No defect 0
4 800 No defect 0
5 900 No defect 0
6 1000 No defect 1
7 1100 No defect 1
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8 1200 No defect 1
9 1300 No defect 1

10 1400 No defect 1

11 500 Inner race 
defect 2

12 600 Inner race 
defect 2

13 700 Inner race 
defect 2

14 800 Inner race 
defect 2

15 900 Inner race 
defect 2

16 1000 Inner race 
defect 3

17 1100 Inner race 
defect 3

18 1200 Inner race 
defect 3

19 1300 Inner race 
defect 3

20 1400 Inner race 
defect 3

21 500 Ball defect 4
22 600 Ball defect 4
23 700 Ball defect 4
24 800 Ball defect 4
25 900 Ball defect 4
26 1000 Ball defect 5
27 1100 Ball defect 5
28 1200 Ball defect 5
29 1300 Ball defect 5
30 1400 Ball defect 5

Table 2: Different feature learning parameter combinations (three sets of convolution and pooling layers and two different activation functions) tested.

CNN 
Combina-

tion
Convolution Layer 1 Convolution Layer 2 Convolution Layer 

3
Activa-
tion

# of ker-
nels

Kernel 
size

# of ker-
nels

Kernel 
size

# of 
ker-

nels

Kernel 
size

1 12 11 x 11 12 5 x 5 6 7 x 8 ReLu
2 12 11 x 11 6 5 x 5 6 7 x 8 ReLu
3 12 11 x 11 3 5 x 5 6 7 x 8 ReLu
4 6 11 x 11 12 5 x 5 6 7 x 8 tanh
5 6 11 x 11 6 5 x 5 6 7 x 8 tanh
6 6 11 x 11 3 5 x 5 6 7 x 8 tanh
7 12 15 x 15 12 5 x 5 6 8 x 9 ReLu
8 12 15 x 15 6 5 x 5 6 8 x 9 ReLu
9 12 15 x 15 3 5 x 5 6 8 x 9 ReLu

10 6 15 x 15 12 5 x 5 6 8 x 9 tanh
11 6 15 x 15 6 5 x 5 6 8 x 9 tanh
12 6 15 x 15 3 5 x 5 6 8 x 9 tanh
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Table 3: Classification performance of different feature learning parameter combinations for dataset 1 (180 samples – 126 training samples and 54 validation 

samples).

CNN Combination Accuracy Preci-
sion Recall F-score

1 0.778 0.840 0.913 0.875
2 0.926 0.943 0.980 0.962
3 0.815 0.880 0.917 0.898
4 0.815 0.898 0.898 0.898
5 0.852 0.885 0.958 0.920
6 0.778 0.823 0.933 0.875
7 0.741 0.833 0.869 0.851
8 0.833 0.882 0.937 0.909
9 0.852 0.868 0.979 0.920

10 0.907 0.942 0.961 0.951
11 0.852 0.902 0.939 0.920
12 0.926 0.962 0.961 0.962

Table 4: Classification performance of different feature learning parameter combinations for dataset 2 (120 samples – 84 training samples and 36 validation 

samples).

CNN Combina-
tion Accuracy Precision Recall F-score

1 0.750 0.794 0.931 0.857
2 0.861 0.886 0.969 0.925
3 0.778 0.848 0.903 0.875
4 0.722 0.788 0.896 0.839
5 0.778 0.848 0.903 0.875
6 0.667 0.727 0.889 0.800
7 0.722 0.788 0.897 0.839
8 0.722 0.788 0.897 0.839
9 0.667 0.750 0.857 0.800

10 0.806 0.853 0.935 0.892
11 0.750 0.818 0.900 0.857
12 0.889 0.914 0.970 0.941

Table 5: Classification performance of different feature learning parameter combinations for dataset 3 (120 samples – 84 training samples and 36 validation 

samples).

CNN Combina-
tion

Accuracy Precision Recall F-score

1 0.694 0.781 0.862 0.820
2 0.777 0.823 0.933 0.875
3 0.667 0.774 0.827 0.800
4 0.583 0.700 0.778 0.737
5 0.694 0.806 0.833 0.820
6 0.639 0.697 0.885 0.780
7 0.667 0.750 0.857 0.800
8 0.583 0.656 0.84 0.737
9 0.555 0.645 0.800 0.714
10 0.750 0.818 0.900 0.857
11 0.694 0.781 0.862 0.820
12 0.806 0.853 0.935 0.892
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Table 6: Classification performance of different feature learning parameter combinations for dataset 4 (210 Mexican Hat wavelet scalogram samples – 147 

training samples and 63 validation samples).

CNN Combina-
tion Accuracy Precision Recall F-score

1 0.714 0.789 0.882 0.833

2 0.809 0.864 0.927 0.895
3 0.762 0.857 0.873 0.865
4 0.714 0.804 0.865 0.833
5 0.730 0.793 0.902 0.844
6 0.667 0.750 0.857 0.800
7 0.698 0.772 0.880 0.822
8 0.730 0.807 0.885 0.844
9 0.714 0.804 0.865 0.833

10 0.809 0.864 0.927 0.895
11 0.762 0.842 0.889 0.865
12 0.841 0.883 0.946 0.914

Table 7: Classification performance of different feature learning parameter combinations for dataset 5 (210 coiflet wavelet scalogram samples – 

147 training samples and 63 validation samples).

CNN Combina-
tion

Accuracy P r e c i -
sion

Recall F-score

1 0.714 0.750 0.937 0.833
2 0.857 0.885 0.964 0.923
3 0.810 0.850 0.944 0.895
4 0.762 0.828 0.906 0.865
5 0.810 0.850 0.944 0.895
6 0.746 0.797 0.922 0.855
7 0.730 0.767 0.939 0.844
8 0.778 0.803 0.961 0.875
9 0.762 0.800 0.941 0.865
10 0.825 0.867 0.945 0.904
11 0.841 0.869 0.964 0.914
12 0.873 0.902 0.965 0.932

Table 8: Classification performance of different feature learning parameter combinations for dataset 6 (420 samples – 294 training samples and 126 validation 

samples).

CNN Combination Accuracy Precision Recall F-score
1 0.770 0.822 0.924 0.870
2 0.921 0.943 0.975 0.959
3 0.825 0.867 0.945 0.904
4 0.794 0.833 0.943 0.885
5 0.857 0.900 0.947 0.923
6 0.786 0.853 0.908 0.880
7 0.754 0.812 0.913 0.860
8 0.825 0.874 0.937 0.904
9 0.849 0.899 0.939 0.918
10 0.897 0.934 0.958 0.946
11 0.833 0.861 0.936 0.909
12 0.913 0.935 0.975 0.954
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Table 9: Classification performance using RCNN for dataset 1 (180 samples – 126 training samples and 54 validation samples) for CNN parameter combination 

# 12.

Dataset Object 
Detector Accuracy Preci-

sion Recall F-score Run 
Time (s)

1 RCNN 0.944 0.962 0.981 0.971 182
1 Fast-RCNN 0.926 0.943 0.981 0.962 153
2 RCNN 0.889 0.914 0.970 0.941 122
2 Fast-RCNN 0.889 0.914 0.970 0.941 93
3 RCNN 0.861 0.911 0.968 0.925 136
3 Fast-RCNN 0.833 0.857 0.940 0.909 102
4 RCNN 0.833 0.882 1.000 0.909 282
4 Fast-RCNN 0.833 0.833 0.937 0.909 253
5 RCNN 0.889 0.918 0.966 0.941 298
5 Fast-RCNN 0.873 0.902 0.965 0.932 264
6 RCNN 0.929 0.943 0.983 0.963 620
6 Fast-RCNN 0.920 0.943 0.975 0.959 587

Conclusions
Continuous monitoring of the condition of rolling element bear-

ings to avoid machine failure is of great significance. In recent years 
Deep Learning (DL) has been very attractive approach in the field of 
Machine Condition Monitoring (MCM). Most machine health mon-
itoring applications use neural networks with features extracted from 
sensor data. Deep learning neural networks developed specifically for 
2D image classification are well-suited for pattern recognition and 
classification using wavelet images instead of features extracted from 
raw data. In this work vibration signals are collected and analyzed for 
bearings with no fault, seeded inner race fault, and seeded ball fault. 
Multiple datasets were generated by applying two wavelet filters – 
Mexican Hat and coiflet wavelets with overlapping and non-overlap-
ping sections of the vibration signal time-series. Convolutional Neural 
Networks (CNN) and Region-based CNNs (RCNNs) with two Object 
Detector algorithms were trained using wavelet scalogram images. 
The main objective is to investigate the classification of operating par-
ameters (rotational speed and type of fault) into 6 classes. We have 
achieved a classification accuracy in excess of 90% in some cases (with 
F-score in excess of 90% in most cases). 

Results of this work showed that wavelet images and CNN are prom-
ising tools for intelligent fault detection. In future research, we will 
continue to explore the use of DL with small data, and we will strive to 
improve the prediction rate for fault detection in rotating machinery. 
In addition to using Mexican Hat wavelets and coiflet wavelets, the net-
work can be trained with other wavelet images such as Haar wavelets. 
With multiple types of inputs, an ensemble CNN will be developed for 
combining classification predictions from different models.
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