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Optimization & Design
There are a number of different ways optimization methods can be 
categorized: mathematical programming versus direct search and 
deterministic versus stochastic being two examples of characterisations 
that may be used. Mathematical programming methods typically 
require the model to be represented by a set of equations, equations that 
could be algebraic or differential, and make use of derivatives to guide 
a search to an optimum. Direct search methods, otherwise known as 
zeroth-order methods, on the other hand, require only the objective 
function value itself, with possibly an indication of the feasibility of 
a given solution. Mathematical programming methods are usually 
deterministic whereas direct search methods may be deterministic [1] 
or stochastic, such as genetic algorithms [2], simulated annealing [3], 
and particle swarm optimization [4], to mention only a few.

Direct search methods, and especially those based on stochastic 
searches, are often necessary due to the properties of the optimization 
problem. Problems with discontinuities, for instance, are challenging 
to handle robustly, if at all, using mathematical programming 
approaches. Properties such as nonlinear and non-convex behaviour, 
in either or both of the objective functions or the search space, also 
challenge many solution methods as do problems with models based 

on ordinary differential equations, partial differential equations, or 
integral equations. In engineering, models may also exhibit noise. 
Noise can arise when the objective function is based on data from 
experiments but noise may also arise when the objective function 
requires the numerical solution of embedded differential equations, 
for instance. Noise in the values of the objective function creates 
difficulties in using derivative information for guiding the search and 
will, in the best case, lead to sub-optimal results.

In engineering design, many problems are inherently multi-criteria. 
Each design will be assessed with techno-economic, environmental, 
operability, and other criteria. Multiobjective optimization is therefore 
a desirable feature of an optimization solver. Such problems can and 
are frequently solved using single objective methods in a variety of 
ways, including the specification of a suitably modified single objective 
problem by combining the different criteria into a single objective 
through the use of weights, known as scalarization [5]. Alternatively, 
one criterion can be used as the objective for the optimization 
method with other objectives incorporated into the constraints, 
with an ε parameter to adjust the limit on each other objective [6]. 
These approaches require multiple solutions with different weights or 
different constraints. Multiobjective methods consider all objectives 
simultaneously without a priori weights or special constraints and 
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will typically generate a trade-off set of Pareto optimal solutions as 
the outcome. Such methods can be potentially computationally more 
efficient by avoiding repeated searches.

Features of Fresa
Fresa is an example of a stochastic direct search method. Specifically, 
it implements a population based evolutionary procedure inspired 
by the propagation of plants in nature. New solutions in the search 
space are generated, using random numbers, by generating neighbour 
solutions via a methodology inspired by the propagation of runners 
by Strawberry plants [7]. Solutions are selected for propagation based 
on their fitness. The fitness is generally a function of the values of the 
objective functions. The number of runners and their distance for 
propagation are functions of the fitness as well. Fresa supports both 
single and multi-objective optimization.

An advantage of the underlying algorithm is that it has few user-
tunable parameters. These include the population size, the number of 
cycles or generations to perform, the maximum number of runners 
to generate, and the choice of and parameters for the fitness method 
used. The results obtained by this algorithm have been shown to 
be relatively insensitive to the values of these parameters [8]. For 
multi-objective optimization, several methods are available for the 
assignment of fitness values to individual solutions in the population. 
One of these is the non-dominated sorting algorithm, exemplified by 
the popular NSGA-II genetic algorithm implementation [9]. In Fresa, 
an alternative method is the assignment of fitness values based on 
the Hadamard product of the rankings with respect to the individual 
criteria [10]. A variation on this latter method is an alternative 
based on the Borda sum of those individual rankings. These latter 
two fitness assignment methods tend to emphasise solutions found 
towards the ends of the Pareto frontier whereas the non-dominated 
sorting algorithm may lead to the ends of the frontier having less 
representation in the population [10]. The advantage of the Hadamard 
and Borda based fitness assignment methods is that they scale linearly 
with both the population size and the number of objectives whereas 
a non-dominance sorting approach scales as with .

The type agnostic nature of Fresa, for both the space of solutions and 
their objective function values, allows for heterogeneous populations. 
In such populations, individuals may use different representations 
of potential solutions for the problem [11]. This is achieved by the 

combination of dynamic typing and multiple dispatch provided by the 
Julia language. 

Fresa is in the Julia General Registry1 and so installation is 
straightforward, with no dependencies beyond a small number of 
standard Julia packages. The software is open source and available 
directly from github.com [12].
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