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Introduction
Modern manufacturing, including automated machining operations, 
requires reliable methods for monitoring product defects and process 
faults to minimize production downtime and ensure product quality. 
In most cases, tool failures and product defects are stochastic in nature 
and are not linearly predictable. This means that faults and defects 
must be detected as they happen, and systems must be in place to 
respond quickly. Over several decades, researchers and engineers 
attempted to analyze changes in acoustic emissions (AE) of metal 
machining, grinding, and metal forming processes for tool condition 
monitoring (TCM) and to predict impending part defect [1,2]. 
Despite the documented success in showing how the AE signature 
changes in response to machining process conditions, more efforts are 
still needed to produce a real-time AE-based monitoring system for 

cold forging. The volume of published research work in using AE for 
non-destructive testing of the metal forging processes is small when 
compared to published work in the fields of using AE in monitoring 
machining and grinding. 

Recent advances in high-speed microprocessors, data acquisition 
systems, and primarily the increased use of machine learning in 
manufacturing [3,4], hold new promise for monitoring and predicting 
faults in automated forging processes and has invigorated the recent 
research spike in this field. The intensive use of affordable sensors and 
the advancements of data analysis methods and data mining software 
have created a wealth of information from production systems in the 
manufacturing sector. Together with the growing use of machine 
learning algorithms, Internet of things (IoT), and cloud computing, the 
implementation of industry 4.0 or “smart manufacturing” is becoming 
accessible to many production facilities [5,6]. These developments are 
enabling the effective use of the available data towards improving the 
performance and integration of manufacturing processes. The long-
term goal is to enable a just-in-time automated or manned scheduling 
for machine maintenance, tool replacement or reconditioning, and 
optimized tuning of process parameters. 

In this paper, the latest advances in applying AE sensors and machine 
learning for cold forging condition monitoring are discussed. Based on 
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this review, a generalized framework to develop an (AE) monitoring 
system for improving processes and product quality controls in cold 
forging processes is proposed. 

Cold Forging Defects
Forging is defined as the high speed forming or deforming of metal 
in its solid state. In hot forging, the workpiece must be heated to high 
temperatures to reduce strain hardening while the metal remains 
ductile and malleable. In contrast, cold forging deforms metal while it 
is below its recrystallization point, which can improve the mechanical 
properties of the product due to strain hardening. In the cold working 
process, a bar or wire stock is fed into a die, and a ram or hammer 
provides a strong single blow or repeated blows to squeeze the material 
into the shape of the cavity constrained between the die halves. The 
forging ram or hammer can be driven by mechanical, pneumatic, or 
hydraulic actuators. To produce the product net-shape, the process 
may be composed of successive steps to create the required geometry 
in a progressive sequence. Other features and fine details (such 
as slots, threads, knurls, etc.) can be added by secondary forming 
steps. Advantages of cold forging include better dimensional control, 
improved directional properties, and net-shape or near net-shape 
production. Automating the process allows economical production at 
high rates, but these processes are prone to tool failures and product 
defects that can reduce product quality and increase production costs.

As summarized in Table 1, the causes of critical cold forging defects 
are varied, and most occur within the forging die, which prevents 
visual inspection and early identification of errors. Most of the early 
monitoring methods for bulk metal forming are not capable of 
detecting or predicting such damages [7]. As a result, process defects 
and product faults are often not detected until the finished product 
is evaluated, and the high production rate ensures many faulty units 
will be produced in the intervening time. Integrating new online (real-
time) and process-non-intrusive monitoring systems could improve 
product quality, reduce waste, and reduce maintenance costs and 
machine downtime, but these systems must provide responsive and 
accurate detection and classification of defects and damages.

Table 1: Common Cold Forging Defects.

Defect type Cause

Cold shut
Occurs when small cracks form at the corners of the 
work part. Sharp corners and improper design of the 

forging dies are the main causes of this defect.

Scale pits 
Irregular patterns that occur on the surface of the 
forges part due to improper cleaning of the forged 

surface.

Unfilled sections
Result from insufficient raw material, poor die design 
and non-optimum process parameters such as forging 

temperature and pressure.

Die shift Caused by misalignment between the upper and lower 
die halves resulting in improper product dimensions.

Incomplete 
forging

May occur because of less than optimum pressure 
and/or hammer blow speed. 

Surface cracking Common under non-optimum process parameters 
such as forging speed and temperature.

Internal shear 
cracking 

Generated during the cold-forging due to high rates of 
strain hardening and brittleness.

AE as a Defect Detector
Acoustic emissions (AE) are sound waves emitted during spontaneous 
energy release inside the material structure under different types of 
loading and deformation conditions. Such conditions may include 

yielding, cracking, friction, dislocations, or phase transformation [8,9]. 
During each forging blow, many dislocations move simultaneously 
within the material inside the die, which produces easily detectable 
AE waves. The AE signals emitted during cold forming operations 
are indicative of the several stages of deformation in each operation 
as documented by early research studies. Dornfeld and Diei [10] 
investigated the AE signals generated during simple forging of 
cylindrical specimens of 7074-T6 Aluminum from start of plastic 
deformation through eventual cracking. The found the data to be 
indicative of three distinct stages; initial yielding, followed by plastic 
deformation, and finally cracking. Kim [11,12] reported that the AE 
signal generated during punching can characterize three stages of the 
punching process, namely, initial impact, shear fracture, and rupture. 
Good correlations were found between stock hardness, thickness, tool 
size, tool wear and the relative timing and amplitude of the AE signal 
in the three punching stages. During many of these stages, friction 
between the tool (die or punch) and workpiece is present. Clearly, 
these stages are not fixed, and they change during the forming process. 
The change in the fractal dimension of AE was found to be an effective 
indicator of the progress of damage to fracture of cold forging dies 
[13]. AE generated during open and closed die forging processes of 
Al alloy 2618-T61 has been presented in [14]. The AE signal could be 
differentiated into three stages of yielding, intermediate deformation 
and then filling of die. The effect of lubrication on the AE signals was 
also studied. The feasibility of using AE for online monitoring of cold 
forging of case hardening step was experimentally investigated [15]. 
Cracking and tool wear were detected by analyzing the distribution of 
the AE energy and amplitude. In [16] the AE technique is examined 
with respect to its ability to detect deviations in lubrication conditions 
and in its correlations with occurring defects during upset forming of 
different aluminum part geometries and alloys. The results suggested 
that the AE crack detection ability is sensitive to material ductility. 

Machine Learning
Machine learning (ML) is part of artificial intelligence and is a 
field of study where computer algorithms use data to improve their 
performance through fully automatic or semi-automatic experiences. 
In a 1996 technical report [17], the authors presented a thorough 
survey of machine learning methods that are applicable to wide 
range of manufacturing fields. In traditional ML algorithms, more 
human intervention is required to prepare features, perform training 
and validation to get the desired results. Other artificial intelligence 
techniques can be utilized to aid humans in the preparations of 
features and data sets needed for a successful implementation of 
ML algorithms. Deep learning (DL) [18], on the other hand, is a 
more complex multilayered configuration made of artificial neural 
networks (ANNs) that require more programming efforts and 
more data. However, deep learning algorithms require less human 
intervention for features selection, data preparation and training, and 
may outperform traditional simpler ANNs. 

Several Computational Intelligence methods were used to detect 
defect states for cold headed fasteners production process [19]. 
Using process force signals, the results in this study showed that the 
probabilistic ANN and support vector machine (SVM) classifiers 
showed superior performance with an average accuracy of over 98%. 
A review of the research work of deep learning techniques and their 
applications in machine health monitoring systems is presented in 
[20]. The use of deep learning to detect defects in manufacturing is 
surveyed in [21] with a discussion on limitations and challenges of the 
existing methods. In a recent study [22], the feasibility of using deep 
learning, convolutional neural network (CNN), for fault detection in 
cold forging was investigated. In this work, researchers used vibration 
data collected from an industrial setting for commonly encountered 
faults. The CNN detected fault conditions with 99.02% accuracy and 
classified each fault with 92.66% accuracy. The integration of artificial 
intelligence (AI) for AE feature selection might be one of the best 
ways to ensure optimum process condition monitoring with improved 
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accuracy. This will result in minimizing scrap cost and increasing 
machine run time. It can be clearly observed that more work is needed 
in the field of using ML and AE to detect faults in cold forging. 

A Framework for the use of AE and ML for Cold 
Forging Fault Detection
Unlike vibration sensors, AE sensors are designed to inherently filter 
out high vibratory signals from the environment to detect fatigue 
and failure events of interest. When mounting AE sensors, different 
sensors’ mounting locations should be examined in search of optimum 
sensor positions on the forging press. A suggested experimental work 
is organized in the four following phases:

a) Perform experimental tests to establish the relationship between 
the AE signals’ features and process parameters by using sensor 
fusion. In addition to the AE signals, blow force, temperature, 
and ram speed should also be acquired. These process variables 
measurements are necessary for AE characterization and to 
optimize the feature extraction of the AE signals. Extensive forging 
tests must be performed on several part geometries and sizes for 
the required part material under various process parameters. This 
phase is also necessary to establish a base line of healthy process 
that produces flawless parts. 

b) Collect data from test runs leading to faulty parts with different 
types of defects (e.g., cracks, tool wear, and die wear) during cold 
forging. This will also assist in tunning a set of acquisition and 
analysis parameters focused on damage detection. Internal part 
defects could be investigated using both ultrasound techniques 
and microscopic imaging techniques for sectioned parts.

c) Perform offline data analysis in the time, frequency, and time-
frequency domains to extract the AE activity features that are 
separable and relevant for a successful implementation of ML 
(phase 4 below). Determine maximum AE signal amplitude and 
statical distribution parameters of the AE signal that represent the 
AE time domain characteristics during each forging blow. These 
may include RMS value, variance, skewness, and kurtosis. Other 
higher statistical moments can be included. Frequency domain 
features, obtained using FFT (Fast Fourier Transform), can also be 
used as discriminative features representing stationary (periodic) 
components of the AE signals. Time-frequency domain features 
such as short-time-frequency transform, wavelets decomposition, 
and empirical mode decomposition (EMD) are widely used to 
convert the one-dimensional signal into a two-dimensional image 
suitable for exploring the non-stationary components of the AE 
signal.

    In the inner loop shown in Figure 1, the extraction of the AE features 
can be accomplished using both supervised and unsupervised 
clustering and classification algorithms. Examples of supervised 
learning include artificial neural networks, support vector 
machine (SVM), decision trees (DT), K-nearest neighborhood 
(KNN) and random forest (RF). On the other hand, examples of 
unsupervised learning may include K-means, self-organizing map 
(SOM), association rule mining (ARM), and density-based spatial 
clustering and application with noise (DBSCAN).

d) This phase aims at establishing the relation between AE signal’s 
features and process faults and part defects. The data pattern 
consists of a series of discrete process variables and product quality 
measures, as presented in Table 2, together with discriminative 
features that can be fed into conventional ANNs or DL systems. 
Due to the multivariable and nonlinear characteristics of the 
cold forging process, rigorous training of the ML algorithms is 
required. The training will be accomplished by associating part 
quality with the corresponding optimal AE features and data 

patterns produced by the sensor fusion system [Figure 1]. The 
most accurate algorithm in predicting the cold forging state 
will be selected for the design and implementation of the online 
monitoring system [Figure 2]. 

Table 2: Input and output parameters for a smart AE-based cold forging 
monitoring system.

 Process Variables Product parameters

Hammer speed Part dimensions and tolerances 

Work piece temperature Part strength (hardness, yield strength and 
fracture toughness)

Die temperature  Part surface finish (roughness, scale pits, 
cracks, flash formation, etc.).

Forging force (pressure for 
hydraulic or pneumatic 

presses)
 

Energy requirements  

Figure 1: Cold forging AE feature extraction framework.

Figure 2: AE-based ML predictive model, (a) Traditional Machine Learning 
data flow. (b) Deep Machine Learning data flow.
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Conclusion
Machine learning techniques offer an alternative approach 
to forecasting and controlling product quality in cold forging 
processes. Despite the investment in training and validating ML 
algorithms, smart monitoring and diagnostic system will lead to 
shorter tuning sessions than those required by die design trials 
and conventional process parameter optimization techniques 
performed with extensive human intervention. AE techniques are 
non-intrusive and have shown good sensitivity to the changes in 
the transmitted high frequency acoustic waves due to the events 
associated with part defects during cold forging processes. Major 
objectives of the research in using AE for online monitoring of 
cold forging include:

i. To characterize the AE signal features and to extract patterns 
that are unique to each type of part defect. 

ii. To investigate the influence of the process parameters and 
operating conditions on the developed defects and associated 
AE signals’ features. 

iii. To construct, by training and validation, a smart ML algorithm 
that will detect and classify part defects with high accuracy.

iv. To implement the selected algorithm in an online cold forging 
process monitoring system.

Deep machine learning ANNs are gaining ground in industrial 
applications and has the potential to be used for online process 
condition monitoring. More work is required to validate the 
accuracy and responsivity of these advanced ML techniques.
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