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Introduction
 Plant growth has been traditionally measured by destruction meth-

ods that include sampling, drying and chemical analysis of dried ma-
terial. However, the direct measurement of chlorophyll fluorescence 
has been taken as the most conventional method as it is more instan-
taneous and non-destructive to plants [1]. Even though the harvesting 
methods are more suitable in long-term assessment of the plant 
growth, they are inappropriate for the measurement of short-term car-
bon gain, which contribute to the carbon exchange measurements [2]. 
The existence of any type of stress that results in the damage of PSII 
(photoinhibition), or the induction of sustained quenching [3] results 
in a lowering of the maximum photochemical efficiency of PSII (esti-
mated by dark-adapted Fv/Fm ratio). Fm is the maximal possible value 
for fluorescence and the difference between Fo and Fm is the variable 
fluorescence, Fv [4]. Thus, measuring dark-adapted Fv/Fm   following 

an appropriate period of dark adaptation has been used as one of the 
most common techniques for measuring ‘stress’ in leaves [5]. 

 Dark-adapted Fv/Fm ratio provides a rapid method for determin-
ing changes in maximum quantum efficiency of PSII photochemistry 
[5]. It estimates the efficiency of excitation energy capture by open 
PSII reaction centres [5]. For unstressed leaves, the value of Fv/Fm is 
highly consistent, with values of ~0.83, and correlates to the maximum 
quantum yield of (ΦPSII) [4]. When exposed to water deficit stress, 
photosynthetic productivity and canopy development significantly 
drop in most plant species. This could be attributed to the reduction 
of CO2 uptake that is associated with increased dissipation of excita-
tion energy in the PSII antennae and photo damage of PSII reaction 
centers [6]. 

Jatropha curcas is a fundamental crop in biofuel production be-
cause of its seeds that contain about 40% of oil. The Jatropha curcas 
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of high fossil fuel consumption which plays a significant role in the greenhouse effect, J.curcas biodiesel have been considered a potential al-
ternative source of clean energy. Although it best grows under precipitation amounts of 250-1200mm annually, this plant has been reported 
to be drought tolerant, but no study has been done to ascertain this in Botswana. In this study, potted plant (35 days old) from three J.curcas 
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plant’s oil is the most promising substitute to petrol diesel that can be 
used in biofuel production due to the availability, sustainability and 
lower feedstock price in the market [7]. Jatropha curcas is a peren-
nial plant belonging to the family Euphorbiaceae, thought to originate 
from Mexico or Central America and was introduced to Africa and 
Asia in the 16th century [8]. It is a drought-resistant plant that can be 
cultivated in areas of low rainfall [9]. It is, therefore, essential to study 
the diurnal measurements of chlorophyll fluorescence of Jatropha 
curcas to assess the extent to which the photosynthetic apparatus is 
damaged under water deficit stress and see if it can recover. 

Materials and methods
Experimental setup

Three Jatropha curcas accession seeds were collected from the 
North, South and Central regions of Botswana (Maun [19°58’S, 
23°25’E]; Thamaga [24°40’S, 25°32’E] and Mmadinare [21°56’S, 
27°37’E], respectively). They were then germinated in Petri dishes at 
25°C. After emergence, the seedlings were transferred to pots filled 
with potting soil. Each pot contained one plant and each accession 
had five replicates. The plants were raised in a greenhouse at 27°C 
and relative humidity of 65-70% (Envirowatch model, South Africa). 
When the plants were 35 days old, they were separated into the con-
trol (watered with half-strength Hoagland’s solution) and water deficit 
stress sets. Water deficit stress was imposed by withholding water. The 
control plants were watered with 250ml of half-strength Hoagland’s 
solution (composed as shown in Table 1) [10] in alternate days [5]. 

Table 1: Initial Recovery rates of dark Fv/Fm ratio and ΦPSII in different 
water-stressed Jatropha curcas plants after 7 days of rehydration

Accession Initial Recovery rate
Dark

Fv/Fm ratio
ΦPSII

Mmadinare 0.007 0.02
Thamaga 0.001 0.02

Maun 0.003 0.02

Chlorophyll fluorescence

Chlorophyll fluorescence was measured according to Moseki and 
Dintwe [5]. The efficiency of excitation energy capture by open PSII 
reaction centres was estimated from the ratio of variable to max-
imal chlorophyll fluorescence (i.e., dark-adapted Fv/Fm ratio). Fully 
expanded leaves of four different plants from each treatment were 
dark-adapted for 15 minutes by placing the plants in a dark chamber 
and the dark-adapted Fv/Fm was then determined using Hansatech 
fluorometer (FMS2, Hitchin, UK). Diurnal measurements of 
dark-adapted Fv/Fm ratio were taken at 0900hrs, 1200hrs and 1500hrs 
on day 49 of water deficit stress exposure. The maximum quantum 
yield of PSII electron (PSII) transport was determined using the 
Hansatech fluorometer (FMS2, Hitchin, UK).

Results
When subjected to water deficit stress, Maun accession exhibited de-

cline in dark-adapted Fv/Fm ratio after 21 Days of exposure to water 
deficit stress (DOE) (Figure 1). Thamaga accession showed a decline in 
the dark-adapted Fv/Fm ratio after 35 DOE while Mmadinare acces-
sion displayed a decline after 49 DOE (Figure 1). At the end of water 
deficit stress treatment (112 DOE), Thamaga accession displayed the 
lowest dark-adapted Fv/Fm ratio compared to the other accessions 
(Maun and Mmadinare). Mmadinare accession followed by Maun ac-
cession showed the most rapid recovery of dark adapted Fv/Fm ratio 
than Thamaga accession after a week of re-watering at 112 DOE. After 

exposure to water deficit stress for 49 days, all the accessions appeared 
to recover from 1200hrs to 1600hrs in the dark-adapted Fv/Fm ratio 
(Figure 2). In the morning (at 0900hrs), Maun accession followed by 
Mmadinare accession exhibited the highest dark-adapted Fv/Fm ratio, 
with Thamaga accession exhibiting the least dark-adapted Fv/Fm 
ratio. At noon (at 1200hrs), Mmadinare and Maun accessions still dis-
played a higher dark-adapted Fv/Fm ratio than Thamaga accession. By 
late afternoon (at 1600hrs), all the accessions displayed a recovery in 
dark-adapted Fv/Fm ratio to almost their initial morning dark-adapt-
ed Fv/Fm ratio. 

Figure 1: The effect of water deficit stress on the maximum photochemical 
efficiency of PSII (estimated from dark-adapted Fv/Fm ratio) for Thamaga (TH), 
Mmadinare (MAD) and Maun (MAU) Jatropha curcas accessions. Bars rep-
resent standard error of means (n=5). The arrow at 112 Days after exposure 
denotes the beginning of re-watering.

Figure 2: The effect of water deficit stress on the maximum photochemical 
efficiency of PSII (estimated from dark-adapted Fv/Fm ratio) for Thamaga (TH), 
Mmadinare (MAD) and Maun (MAU) Jatropha curcas accessions measured 
from 0900hrs, 1200hrs and 1600hrs after 49 days of exposure.  Bars represent 
SEM (n=5).

Water-stressed Mmadinare and Maun accessions exhibited decline 
in ΦPSII after 28 days of exposure to water deficit stress (DOE) while 
Thamaga accession displayed a decline after 56 DOE (Figure 3). At the 
end of water deficit stress exposure (at 112 DOE), Thamaga accession 
displayed the lowest ΦPSII compared to other accessions (Maun and 
Mmadinare). Mmadinare and Maun accessions accession showed the 
most rapid recovery of ΦPSII than Thamaga accession a week after the 
day of re-watering. All the accessions displayed recovery of ΦPSII to 
more or less their initial value at the start of the experiment (Day 0). 
After re-watering, Mmadinare accession displayed a higher recovery 
rate of 0.007 in dark Fv/Fm ratio than Thamaga and Maun accessions 
which exhibited recovery rate of 0.003 and 0.001 respectively (Table 
1). All the accessions exhibited an equal recovery rate in the quantum 
yield of PSII electron transport (ΦPSII) of 0.02.
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Figure 3: The effect of water deficit stress on the maximum quantum effi-
ciency of photosystem (ΦPSII) in three Jatropha curcas accessions viz., 
Mmadinare (MAD), Thamaga (TH) and Maun (MAU). Bars indicate stan-
dard error of means (n=5). Arrow denotes the beginning of re-watering (112 
DOE).

Discussion 
At the end of water deficit stress exposure, all the three accessions 

exhibited a decrease in dark-adapted Fv/Fm ratio, but it was more 
pronounced in Thamaga accession than in Mmadinare and Maun 
accessions (Figure 1). Similar results were obtained by Luvaha et al. 
[11], who observed an apparent reduction in the dark-adapted Fv/Fm 
ratio with increasing soil moisture deficit. It is worth-noting that upon 
re-watering, Thamaga accession displayed a slightly lower recovery 
rate of dark-adapted Fv/Fm ratio than the other two accessions (Maun 
and Mmadinare) (Figure 1). The quick recovery of Mmadinare and 
Maun accession in dark-adapted Fv/Fm ratio could suggest that the 
decline in the dark-adapted Fv/Fm ratio could be ascribed mainly to 
the downregulation of PSII or heat dissipation by the Xanthopyll cycle 
rather than to damage to the PSII reaction centres [12,13]. Diurnal 
measurements on the 49th day showed that indeed the decrease in 
dark-adapted Fv/Fm ratio could be ascribed to the downregulation of 
PSII as attested to by their quick recovery from 12000hrs to 1600hrs 
(Figure 2). On the other hand, Thamaga accession displayed the low-
est initial recovery rate of dark-adapted Fv/Fm ratio after re-watering 
(Table 1) that could be attributed to both downregulation of PSII and 
damage to the PSII reaction centres. 

The quantum yield of PSII electron transport (ΦPSII), which rep-
resents electron flow beyond PSII [5], decreased in all the accessions 
when subjected to water deficit stress (Figure 3). Thamaga accession 
displayed a more decreased quantum yield of PSII electron transport 
than Mmadinare and Maun accessions. These results are consistent 
with those obtained by Moseki and Dintwe [5] where water-stressed 
‘Town’ sorghum cultivar exhibited a significantly more reduced quan-
tum yield of PSII electron transport than ‘Segaolane’ sorghum cultivar. 
All the accessions, after re-watering showed recovery of ΦPSII to al-
most their initial value (at the start of the water deficit stress exposure, 
day 0) (Figure 3). Furthermore, all the three accessions exhibited an 
equal recovery rate in ΦPSII (Table 1). This most rapid recovery of 
ΦPSII of all the three accessions upon re-watering might indicate that 
the decrease of ΦPSII could be attributed mainly to excitation energy 
being dissipated as heat (down-regulation of PSII) by the xantho-
phyll cycle [14]. These findings were consistent with those of Subrah-
manyam et al. [15] who found out that water deficit stress had no sig-
nificant effect on primary photochemistry of PSII in wheat cultivars. 

Conclusion
It could be concluded that the most rapid recovery of dark-adapted 

Fv/Fm ratio and ΦPSII displayed by Mmadinare and Maun accessions 
than Thamaga accession could be attributed mainly to dissipation of 
excess energy harmlessly as heat. On the other hand, the slower re-
covery rate in dark-adapted Fv/Fm ratio and ΦPSII displayed by Tha-
maga accession showed that the decline could be attributed to both 
the downregulation of PSII and possibly damage to the PSII reaction 
centres. 
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